Intraoperative and Postoperative Infection Prevention

      Abstract

      Implementation of strategies for prevention of surgical site infection and periprosthetic joint infection is gaining further attention. We provide an overview of the pertinent evidence-based guidelines for infection prevention from the World Health Organization, the Centers for Disease Control and Prevention, and the second International Consensus Meeting on Musculoskeletal Infection. Future work is needed to ascertain clinical efficacy, optimal combinations, and the cost-effectiveness of certain measures.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Arthroplasty
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Anderson D.J.
        • Podgorny K.
        • Berríos-Torres S.I.
        • Bratzler D.W.
        • Dellinger E.P.
        • Greene L.
        • et al.
        Strategies to prevent surgical site infections in acute care hospitals: 2014 update.
        Infect Control Hosp Epidemiol. 2014; 35: 605-627https://doi.org/10.1086/676022
        • Zimlichman E.
        • Henderson D.
        • Tamir O.
        • Franz C.
        • Song P.
        • Yamin C.K.
        • et al.
        Health care-associated infections: a meta-analysis of costs and financial impact on the US health care system.
        JAMA Intern Med. 2013; 173: 2039-2046https://doi.org/10.1001/jamainternmed.2013.9763
        • Schwarz E.M.
        • Parvizi J.
        • Gehrke T.
        • Aiyer A.
        • Battenberg A.
        • Brown S.A.
        • et al.
        2018 International consensus meeting on musculoskeletal infection: research priorities from the general assembly questions.
        J Orthop Res. 2019; 37: 997-1006https://doi.org/10.1002/jor.24293
        • Bozic K.J.
        • Kurtz S.M.
        • Lau E.
        • Ong K.
        • Chiu V.
        • Vail T.P.
        • et al.
        The epidemiology of revision total knee arthroplasty in the United States.
        Clin Orthop. 2010; 468: 45-51https://doi.org/10.1007/s11999-009-0945-0
        • Bozic K.J.
        • Kurtz S.M.
        • Lau E.
        • Ong K.
        • Vail T.P.
        • Berry D.J.
        The epidemiology of revision total hip arthroplasty in the United States.
        J Bone Joint Surg Am. 2009; 91: 128-133https://doi.org/10.2106/JBJS.H.00155
        • Jafari S.M.
        • Coyle C.
        • Mortazavi S.M.J.
        • Sharkey P.F.
        • Parvizi J.
        Revision hip arthroplasty: infection is the most common cause of failure.
        Clin Orthop Relat Res. 2010; 468: 2046-2051https://doi.org/10.1007/s11999-010-1251-6
        • Zmistowski B.
        • Karam J.A.
        • Durinka J.B.
        • Casper D.S.
        • Parvizi J.
        Periprosthetic joint infection increases the risk of one-year mortality.
        J Bone Joint Surg Am. 2013; 95: 2177-2184https://doi.org/10.2106/JBJS.L.00789
        • Shahi A.
        • Tan T.L.
        • Chen A.F.
        • Maltenfort M.G.
        • Parvizi J.
        In-hospital mortality in patients with periprosthetic joint infection.
        J Arthroplasty. 2017; 32: 948-952.e1https://doi.org/10.1016/j.arth.2016.09.027
        • Parvizi J.
        • Zmistowski B.
        • Adeli B.
        Periprosthetic joint infection: treatment options.
        Orthopedics. 2010; 33: 659https://doi.org/10.3928/01477447-20100722-42
        • Bozic K.J.
        • Ries M.D.
        The impact of infection after total hip arthroplasty on hospital and surgeon resource utilization.
        J Bone Joint Surg Am. 2005; 87: 1746-1751https://doi.org/10.2106/JBJS.D.02937
        • Kurtz S.M.
        • Ong K.L.
        • Schmier J.
        • Mowat F.
        • Saleh K.
        • Dybvik E.
        • et al.
        Future clinical and economic impact of revision total hip and knee arthroplasty.
        J Bone Joint Surg Am. 2007; 89: 144-151https://doi.org/10.2106/JBJS.G.00587
        • Lavernia C.
        • Lee D.J.
        • Hernandez V.H.
        The increasing financial burden of knee revision surgery in the United States.
        Clin Orthop. 2006; 446: 221-226https://doi.org/10.1097/01.blo.0000214424.67453.9a
        • Kurtz S.M.
        • Lau E.
        • Watson H.
        • Schmier J.K.
        • Parvizi J.
        Economic burden of periprosthetic joint infection in the United States.
        J Arthroplasty. 2012; 27: 61-65.e1https://doi.org/10.1016/j.arth.2012.02.022
        • Kurtz S.
        • Ong K.
        • Lau E.
        • Mowat F.
        • Halpern M.
        Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030.
        J Bone Joint Surg Am. 2007; 89: 780-785https://doi.org/10.2106/JBJS.F.00222
        • Mangram A.J.
        • Horan T.C.
        • Pearson M.L.
        • Silver L.C.
        • Jarvis W.R.
        The hospital infection control practices advisory committee. Guideline for prevention of surgical site infection, 1999.
        Infect Control Hosp Epidemiol. 1999; 20: 247-280https://doi.org/10.1086/501620
        • Percival S.L.
        • Emanuel C.
        • Cutting K.F.
        • Williams D.W.
        Microbiology of the skin and the role of biofilms in infection.
        Int Wound J. 2012; 9: 14-32https://doi.org/10.1111/j.1742-481X.2011.00836.x
        • Altemeier W.A.
        • Culbertson W.R.
        • Hummel R.P.
        Surgical considerations of endogenous infections–sources, types, and methods of control.
        Surg Clin North Am. 1968; 48: 227-240https://doi.org/10.1016/s0039-6109(16)38448-1
        • Noble W.C.
        The production of subcutaneous staphylococcal skin lesions in mice.
        Br J Exp Pathol. 1965; 46: 254-262
        • Feldman G.J.
        • Fertala A.
        • Freeman T.A.
        • Hickok N.J.
        Recent advances in the basic orthopedic sciences: osteoarthritis, infection, degenerative disc disease, tendon repair and inherited skeletal diseases.
        Jaypee Brothers Medical Publishers Ltd., 2014https://doi.org/10.5005/jp/books/12346_17 ([accessed 14.10.2019])
        • Alamanda V.K.
        • Springer B.D.
        The prevention of infection: 12 modifiable risk factors.
        Bone Joint J. 2019; 101-B: 3-9https://doi.org/10.1302/0301-620X.101B1.BJJ-2018-0233.R1
        • Berríos-Torres S.I.
        • Umscheid C.A.
        • Bratzler D.W.
        • Leas B.
        • Stone E.C.
        • Kelz R.R.
        • et al.
        Centers for disease control and prevention guideline for the prevention of surgical site infection, 2017.
        JAMA Surg. 2017; 152: 784-791https://doi.org/10.1001/jamasurg.2017.0904
        • Allegranzi B.
        • Zayed B.
        • Bischoff P.
        • Kubilay N.Z.
        • de Jonge S.
        • de Vries F.
        • et al.
        New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: an evidence-based global perspective.
        Lancet Infect Dis. 2016; 16: e288-e303https://doi.org/10.1016/S1473-3099(16)30402-9
        • Azboy I.
        • Bedair H.
        • Demirtas A.
        • Ford E.
        • Gahramanov A.
        • Klement M.R.
        • et al.
        General assembly, prevention, risk mitigation, general factors: proceedings of international consensus on orthopedic infections.
        J Arthroplasty. 2019; 34: S55-S59https://doi.org/10.1016/j.arth.2018.09.054
        • Dellinger E.P.
        • Gross P.A.
        • Barrett T.L.
        • Krause P.J.
        • Martone W.J.
        • McGowan J.E.
        • et al.
        Quality standard for antimicrobial prophylaxis in surgical procedures. Infectious Diseases Society of America.
        Clin Infect Dis. 1994; 18: 422-427https://doi.org/10.1093/clinids/18.3.422
        • Aboltins C.A.
        • Berdal J.E.
        • Casas F.
        • Corona P.S.
        • Cuellar D.
        • Ferrari M.C.
        • et al.
        Hip and knee section, prevention, antimicrobials (systemic): proceedings of international consensus on orthopedic infections.
        J Arthroplasty. 2019; 34: S279-S288https://doi.org/10.1016/j.arth.2018.09.012
        • Hansen E.
        • Belden K.
        • Silibovsky R.
        • Vogt M.
        • Arnold W.
        • Bicanic G.
        • et al.
        Perioperative antibiotics.
        J Orthop Res. 2014; 32: S31-S59https://doi.org/10.1002/jor.22549
        • Bratzler D.W.
        • Houck P.M.
        • Surgical Infection Prevention Guideline Writers Workgroup
        Antimicrobial prophylaxis for surgery: an advisory statement from the national surgical infection prevention project.
        Am J Surg. 2005; 189: 395-404https://doi.org/10.1016/j.amjsurg.2005.01.015
        • Leaper D.
        • Burman-Roy S.
        • Palanca A.
        • Cullen K.
        • Worster D.
        • Gautam-Aitken E.
        • et al.
        Prevention and treatment of surgical site infection: summary of NICE guidance.
        BMJ. 2008; 337: a1924https://doi.org/10.1136/bmj.a1924
        • Parvizi J.
        • Shohat N.
        • Gehrke T.
        Prevention of periprosthetic joint infection: new guidelines.
        Bone Joint J. 2017; 99-B: 3-10https://doi.org/10.1302/0301-620X.99B4.BJJ-2016-1212.R1
        • Peersman G.
        • Laskin R.
        • Davis J.
        • Peterson M.G.E.
        • Richart T.
        Prolonged operative time correlates with increased infection rate after total knee arthroplasty.
        HSS J. 2006; 2: 70-72https://doi.org/10.1007/s11420-005-0130-2
        • Bozic K.J.
        • Ward D.T.
        • Lau E.C.
        • Chan V.
        • Wetters N.G.
        • Naziri Q.
        • et al.
        Risk factors for periprosthetic joint infection following primary total hip arthroplasty: a case control study.
        J Arthroplasty. 2014; 29: 154-156https://doi.org/10.1016/j.arth.2013.04.015
        • Pugely A.J.
        • Martin C.T.
        • Gao Y.
        • Schweizer M.L.
        • Callaghan J.J.
        The incidence of and risk factors for 30-day surgical site infections following primary and revision total joint arthroplasty.
        J Arthroplasty. 2015; 30: 47-50https://doi.org/10.1016/j.arth.2015.01.063
        • Zhu Y.
        • Zhang F.
        • Chen W.
        • Liu S.
        • Zhang Q.
        • Zhang Y.
        Risk factors for periprosthetic joint infection after total joint arthroplasty: a systematic review and meta-analysis.
        J Hosp Infect. 2015; 89: 82-89https://doi.org/10.1016/j.jhin.2014.10.008
        • Namba R.S.
        • Inacio M.C.
        • Paxton E.W.
        Risk factors associated with deep surgical site infections after primary total knee arthroplasty: an analysis of 56,216 knees.
        J Bone Joint Surg Am. 2013; 95: 775-782https://doi.org/10.2106/JBJS.L.00211
        • Cheng H.
        • Chen B.P.-H.
        • Soleas I.M.
        • Ferko N.C.
        • Cameron C.G.
        • Hinoul P.
        Prolonged operative duration increases risk of surgical site infections: a systematic review.
        Surg Infect. 2017; 18: 722-735https://doi.org/10.1089/sur.2017.089
        • Wang Q.
        • Goswami K.
        • Shohat N.
        • Aalirezaie A.
        • Manrique J.
        • Parvizi J.
        Longer operative time results in a higher rate of subsequent periprosthetic joint infection in patients undergoing primary joint arthroplasty.
        J Arthroplasty. 2019; 34: 947-953https://doi.org/10.1016/j.arth.2019.01.027
        • Anis H.K.
        • Sodhi N.
        • Klika A.K.
        • Mont M.A.
        • Barsoum W.K.
        • Higuera C.A.
        • et al.
        Is operative time a predictor for post-operative infection in primary total knee arthroplasty?.
        J Arthroplasty. 2019; 34: S331-S336https://doi.org/10.1016/j.arth.2018.11.022
        • Aalirezaie A.
        • Akkaya M.
        • Barnes C.L.
        • Bengoa F.
        • Bozkurt M.
        • Cichos K.H.
        • et al.
        General assembly, prevention, operating room environment: proceedings of International Consensus on orthopedic infections.
        J Arthroplasty. 2019; 34: S105-S115https://doi.org/10.1016/j.arth.2018.09.060
        • Birgand G.
        • Toupet G.
        • Rukly S.
        • Antoniotti G.
        • Deschamps M.-N.
        • Lepelletier D.
        • et al.
        Air contamination for predicting wound contamination in clean surgery: a large multicenter study.
        Am J Infect Control. 2015; 43: 516-521https://doi.org/10.1016/j.ajic.2015.01.026
        • Erichsen Andersson A.
        • Petzold M.
        • Bergh I.
        • Karlsson J.
        • Eriksson B.I.
        • Nilsson K.
        Comparison between mixed and laminar airflow systems in operating rooms and the influence of human factors: experiences from a Swedish orthopedic center.
        Am J Infect Control. 2014; 42: 665-669https://doi.org/10.1016/j.ajic.2014.02.001
        • Rezapoor M.
        • Alvand A.
        • Jacek E.
        • Paziuk T.
        • Maltenfort M.G.
        • Parvizi J.
        Operating room traffic increases aerosolized particles and compromises the air quality: a simulated study.
        J Arthroplasty. 2018; 33: 851-855https://doi.org/10.1016/j.arth.2017.10.012
        • Evans R.P.
        Current concepts for clean air and total joint arthroplasty: laminar airflow and ultraviolet radiation: a systematic review.
        Clin Orthop Relat Res. 2011; 469: 945-953https://doi.org/10.1007/s11999-010-1688-7
        • Hooper G.J.
        • Rothwell A.G.
        • Frampton C.
        • Wyatt M.C.
        Does the use of laminar flow and space suits reduce early deep infection after total hip and knee replacement? The ten-year results of the New Zealand Joint Registry.
        J Bone Joint Surg Br. 2011; 93: 85-90https://doi.org/10.1302/0301-620X.93B1.24862
        • Bischoff P.
        • Kubilay N.Z.
        • Allegranzi B.
        • Egger M.
        • Gastmeier P.
        Effect of laminar airflow ventilation on surgical site infections: a systematic review and meta-analysis.
        Lancet Infect Dis. 2017; 17: 553-561https://doi.org/10.1016/S1473-3099(17)30059-2
        • Brandt C.
        • Hott U.
        • Sohr D.
        • Daschner F.
        • Gastmeier P.
        • Rüden H.
        Operating room ventilation with laminar airflow shows no protective effect on the surgical site infection rate in orthopedic and abdominal surgery.
        Ann Surg. 2008; 248: 695-700https://doi.org/10.1097/SLA.0b013e31818b757d
      1. WHO | Global guidelines on the prevention of surgical site infection. WHO.
        ([accessed 08.08.18])
        • Wendlandt R.
        • Thomas M.
        • Kienast B.
        • Schulz A.P.
        In-vitro evaluation of surgical helmet systems for protecting surgeons from droplets generated during orthopaedic procedures.
        J Hosp Infect. 2016; 94: 75-79https://doi.org/10.1016/j.jhin.2016.05.002
        • Piasecki P.
        • Gitelis S.
        Use of a clean air system and personal exhaust suit in the orthopaedic operating room.
        Orthop Nurs. 1988; 7: 20-22
        • Shaw J.A.
        • Bordner M.A.
        • Hamory B.H.
        Efficacy of the steri-shield filtered exhaust helmet in limiting bacterial counts in the operating room during total joint arthroplasty.
        J Arthroplasty. 1996; 11: 469-473https://doi.org/10.1016/S0883-5403(96)80038-6
        • Der Tavitian J.
        • Ong S.M.
        • Taub N.A.
        • Taylor G.J.S.
        Body-exhaust suit versus occlusive clothing.
        J Bone Joint Surg Br. 2003; 85-B: 490-494https://doi.org/10.1302/0301-620X.85B4.13363
        • Young S.W.
        • Zhu M.
        • Shirley O.C.
        • Wu Q.
        • Spangehl M.J.
        Do “surgical helmet systems” or “body exhaust suits” affect contamination and deep infection rates in arthroplasty? A systematic review.
        J Arthroplasty. 2016; 31: 225-233https://doi.org/10.1016/j.arth.2015.07.043
        • Nandi S.
        CORR Insights®: the gown-glove interface is a source of contamination: a comparative study.
        Clin Orthop Relat Res. 2015; 473: 2298-2299https://doi.org/10.1007/s11999-015-4133-0
        • Young S.W.
        • Chisholm C.
        • Zhu M.
        Intraoperative contamination and space suits: a potential mechanism.
        Eur J Orthop Surg Traumatol. 2014; 24: 409-413https://doi.org/10.1007/s00590-013-1178-1
        • Fraser J.F.
        • Young S.W.
        • Valentine K.A.
        • Probst N.E.
        • Spangehl M.J.
        The gown-glove interface is a source of contamination: a comparative study.
        Clin Orthop Relat Res. 2015; 473: 2291-2297https://doi.org/10.1007/s11999-014-4094-8
        • Vijaysegaran P.
        • Knibbs L.D.
        • Morawska L.
        • Crawford R.W.
        Surgical space suits increase particle and microbiological emission rates in a simulated surgical environment.
        J Arthroplasty. 2018; 33: 1524-1529https://doi.org/10.1016/j.arth.2017.12.009
        • Whyte W.
        • Vesley D.
        • Hodgson R.
        Bacterial dispersion in relation to operating room clothing.
        J Hyg (Lond). 1976; 76: 367-378
        • Abouljoud M.M.
        • Alvand A.
        • Boscainos P.
        • Chen A.F.
        • Garcia G.A.
        • Gehrke T.
        • et al.
        Hip and knee section, prevention, operating room environment: proceedings of International consensus on orthopedic infections.
        J Arthroplasty. 2019; 34: S293-S300https://doi.org/10.1016/j.arth.2018.09.014
        • Scaltriti S.
        • Cencetti S.
        • Rovesti S.
        • Marchesi I.
        • Bargellini A.
        • Borella P.
        Risk factors for particulate and microbial contamination of air in operating theatres.
        J Hosp Infect. 2007; 66: 320-326https://doi.org/10.1016/j.jhin.2007.05.019
        • Tjade O.H.
        • Gabor I.
        Evaluation of airborne operating room bacteria with a biap slit sampler.
        J Hyg (Lond). 1980; 84: 37-40https://doi.org/10.1017/S0022172400026498
        • Malinzak R.
        • Ritter M a
        Postoperative wound infection: 35 years of experience.
        Orthopedics. 2006; 29: 797-798
        • Teter J.
        • Guajardo I.
        • Al-Rammah T.
        • Rosson G.
        • Perl T.M.
        • Manahan M.
        Assessment of operating room airflow using air particle counts and direct observation of door openings.
        Am J Infect Control. 2017; 45: 477-482https://doi.org/10.1016/j.ajic.2016.12.018
        • Smith E.B.
        • Raphael I.J.
        • Maltenfort M.G.
        • Honsawek S.
        • Dolan K.
        • Younkins E.A.
        The effect of laminar air flow and door openings on operating room contamination.
        J Arthroplasty. 2013; 28: 1482-1485https://doi.org/10.1016/j.arth.2013.06.012
        • Andersson A.E.
        • Bergh I.
        • Karlsson J.
        • Eriksson B.I.
        • Nilsson K.
        Traffic flow in the operating room: an explorative and descriptive study on air quality during orthopedic trauma implant surgery.
        Am J Infect Control. 2012; 40: 750-755https://doi.org/10.1016/j.ajic.2011.09.015
        • Panahi P.
        • Stroh M.
        • Casper D.S.
        • Parvizi J.
        • Austin M.S.
        Operating room traffic is a major concern during total joint arthroplasty.
        Clin Orthop Relat Res. 2012; 470: 2690-2694https://doi.org/10.1007/s11999-012-2252-4
        • Young R.S.
        • O’Regan D.J.
        Cardiac surgical theatre traffic: time for traffic calming measures?.
        Interact Cardiovasc Thorac Surg. 2010; 10: 526-529https://doi.org/10.1510/icvts.2009.227116
        • Babkin Y.
        • Raveh D.
        • Lifschitz M.
        • Itzchaki M.
        • Wiener-Well Y.
        • Kopuit P.
        • et al.
        Incidence and risk factors for surgical infection after total knee replacement.
        Scand J Infect Dis. 2007; 39: 890-895https://doi.org/10.1080/00365540701387056
        • Parikh S.N.
        • Grice S.S.
        • Schnell B.M.
        • Salisbury S.R.
        Operating room traffic: is there any role of monitoring it?.
        J Pediatr Orthop. 2010; 30: 617-623https://doi.org/10.1097/BPO.0b013e3181e4f3be
        • Pryor F.
        • Messmer P.R.
        The effect of traffic patterns in the OR on surgical site infections.
        AORN J. 1998; 68: 649-660https://doi.org/10.1016/S0001-2092(06)62570-2
        • Bitkover C.Y.
        • Marcusson E.
        • Ransjö U.
        Spread of coagulase-negative staphylococci during cardiac operations in a modern operating room.
        Ann Thorac Surg. 2000; 69: 1110-1115https://doi.org/10.1016/s0003-4975(99)01432-0
        • Baldini A.
        • Blevins K.
        • Gaizo D.D.
        • Enke O.
        • Goswami K.
        • Griffin W.
        • et al.
        General assembly, prevention, operating room - personnel: proceedings of International Consensus on orthopedic infections.
        J Arthroplasty. 2019; 34: S97-S104https://doi.org/10.1016/j.arth.2018.09.059
        • Lynch R.J.
        • Englesbe M.J.
        • Sturm L.
        • Bitar A.
        • Budhiraj K.
        • Kolla S.
        • et al.
        Measurement of foot traffic in the operating room: implications for infection control.
        Am J Med Qual. 2009; 24: 45-52https://doi.org/10.1177/1062860608326419
        • Weiser M.
        • Shemesh S.
        • Chen D.
        • Bronson M.
        • Moucha C.
        The effect of door opening on positive pressure and airflow in operating rooms.
        J Am Acad Orthop Surg. 2018; 26: e105-e113https://doi.org/10.5435/JAAOS-D-16-00891
        • Bédard M.
        • Pelletier-Roy R.
        • Angers-Goulet M.
        • Leblanc P.A.
        • Pelet S.
        Traffic in the operating room during joint replacement is a multidisciplinary problem.
        Can J Surg. 2015; 58: 232-236https://doi.org/10.1503/cjs.011914
        • Putzu M.
        • Casati A.
        • Berti M.
        • Pagliarini G.
        • Fanelli G.
        Clinical complications, monitoring and management of perioperative mild hypothermia: anesthesiological features.
        Acta Biomed. 2007; 78: 163-169
      2. Global guidelines for the prevention of surgical site infection. World Health Organization, Geneva2017
        • Blom A.
        • Cho J.
        • Fleischman A.
        • Goswami K.
        • Ketonis C.
        • Kunutsor S.K.
        • et al.
        General assembly, prevention, antiseptic irrigation solution: proceedings of International Consensus on orthopedic infections.
        J Arthroplasty. 2019; 34: S131-S138https://doi.org/10.1016/j.arth.2018.09.063
        • Cheng M.-T.
        • Chang M.-C.
        • Wang S.-T.
        • Yu W.-K.
        • Liu C.-L.
        • Chen T.-H.
        Efficacy of dilute betadine solution irrigation in the prevention of postoperative infection of spinal surgery.
        Spine. 2005; 30: 1689-1693
        • Chang F.-Y.
        • Chang M.-C.
        • Wang S.-T.
        • Yu W.-K.
        • Liu C.-L.
        • Chen T.-H.
        Can povidone-iodine solution be used safely in a spinal surgery?.
        Eur Spine J. 2006; 15: 1005-1014https://doi.org/10.1007/s00586-005-0975-6
        • Kokavec M.
        • Fristáková M.
        [Efficacy of antiseptics in the prevention of post-operative infections of the proximal femur, hip and pelvis regions in orthopedic pediatric patients. Analysis of the first results].
        Acta Chir Orthop Traumatol Cech. 2008; 75: 106-109
        • Rogers D.M.
        • Blouin G.S.
        • O’Leary J.P.
        Povidone-iodine wound irrigation and wound sepsis.
        Surg Gynecol Obstet. 1983; 157: 426-430
        • Sindelar W.F.
        • Brower S.T.
        • Merkel A.B.
        • Takesue E.I.
        Randomised trial of intraperitoneal irrigation with low molecular weight povidone-iodine solution to reduce intra-abdominal infectious complications.
        J Hosp Infect. 1985; 6: 103-114
        • Sindelar W.F.
        • Mason G.R.
        Irrigation of subcutaneous tissue with povidone-iodine solution for prevention of surgical wound infections.
        Surg Gynecol Obstet. 1979; 148: 227-231
        • Lau W.Y.
        • Fan S.T.
        • Chu K.W.
        • Yip W.C.
        • Chong K.K.
        • Wong K.K.
        Combined topical povidone-iodine and systemic antibiotics in postappendicectomy wound sepsis.
        Br J Surg. 1986; 73: 958-960
        • de Jonge S.W.
        • Boldingh Q.J.J.
        • Solomkin J.S.
        • Allegranzi B.
        • Egger M.
        • Dellinger E.P.
        • et al.
        Systematic review and meta-analysis of randomized controlled trials evaluating prophylactic intra-operative wound irrigation for the prevention of surgical site infections.
        Surg Infect. 2017; 18: 508-519https://doi.org/10.1089/sur.2016.272
      3. Surgical site infections: prevention and treatment | Guidance and guidelines | NICE.
        ([accessed 17.05.08])
        • Pitt H.A.
        • Postier R.G.
        • MacGowan A.W.
        • Frank L.W.
        • Surmak A.J.
        • Sitzman J.V.
        • et al.
        Prophylactic antibiotics in vascular surgery. Topical, systemic, or both?.
        Ann Surg. 1980; 192: 356-364
        • Freischlag J.
        • McGrattan M.
        • Busuttil R.W.
        Topical versus systemic cephalosporin administration in elective biliary operations.
        Surgery. 1984; 96: 686-693
        • Juul P.
        • Merrild U.
        • Kronborg O.
        Topical ampicillin in addition to a systemic antibiotic prophylaxis in elective colorectal surgery. A prospective randomized study.
        Dis Colon Rectum. 1985; 28: 804-806
        • Moesgaard F.
        • Nielsen M.L.
        • Hjortrup A.
        • Kjersgaard P.
        • Sørensen C.
        • Larsen P.N.
        • et al.
        Intraincisional antibiotic in addition to systemic antibiotic treatment fails to reduce wound infection rates in contaminated abdominal surgery.
        Dis Colon Rectum. 1989; 32: 36-38https://doi.org/10.1007/BF02554723
        • Ruiz-Tovar J.
        • Cansado P.
        • Perez-Soler M.
        • Gomez M.A.
        • Llavero C.
        • Calero P.
        • et al.
        Effect of gentamicin lavage of the axillary surgical bed after lymph node dissection on drainage discharge volume.
        Breast. 2013; 22: 874-878https://doi.org/10.1016/j.breast.2013.03.008
        • Antevil J.L.
        • Muldoon M.P.
        • Battaglia M.
        • Green R.
        Intraoperative anaphylactic shock associated with bacitracin irrigation during revision total knee arthroplasty. A case report.
        J Bone Joint Surg Am. 2003; 85-A: 339-342
        • Goswami K.
        • Cho J.
        • Foltz C.
        • Manrique J.
        • Tan T.L.
        • Fillingham Y.
        • et al.
        Polymyxin and bacitracin in the irrigation solution provide no benefit for bacterial killing in vitro.
        J Bone Joint Surg Am. 2019; 101: 1689-1697https://doi.org/10.2106/JBJS.18.01362
        • Espehaug B.
        • Engesaeter L.B.
        • Vollset S.E.
        • Havelin L.I.
        • Langeland N.
        Antibiotic prophylaxis in total hip arthroplasty. Review of 10,905 primary cemented total hip replacements reported to the Norwegian arthroplasty register, 1987 to 1995.
        J Bone Joint Surg Br. 1997; 79: 590-595https://doi.org/10.1302/0301-620x.79b4.7420
        • Parvizi J.
        • Saleh K.J.
        • Ragland P.S.
        • Pour A.E.
        • Mont M.A.
        Efficacy of antibiotic-impregnated cement in total hip replacement.
        Acta Orthop. 2008; 79: 335-341https://doi.org/10.1080/17453670710015229
        • Bohm E.
        • Zhu N.
        • Gu J.
        • de Guia N.
        • Linton C.
        • Anderson T.
        • et al.
        Does adding antibiotics to cement reduce the need for early revision in total knee arthroplasty?.
        Clin Orthop Relat Res. 2014; 472: 162-168https://doi.org/10.1007/s11999-013-3186-1
      4. Australian National Joint Replacement Registry, Annual Report 2017.
        ([accessed 22.05.18])
        • Anis H.K.
        • Sodhi N.
        • Faour M.
        • Klika A.K.
        • Mont M.A.
        • Barsoum W.K.
        • et al.
        Effect of antibiotic-impregnated bone cement in primary total knee arthroplasty.
        J Arthroplasty. 2019; 34: 2091-2095.e1https://doi.org/10.1016/j.arth.2019.04.033
        • King J.D.
        • Hamilton D.H.
        • Jacobs C.A.
        • Duncan S.T.
        The hidden cost of commercial antibiotic-loaded bone cement: a systematic review of clinical results and cost implications following total knee arthroplasty.
        J Arthroplasty. 2018; 33: 3789-3792https://doi.org/10.1016/j.arth.2018.08.009
        • Kärrholm J.
        • Lindahl H.
        • Malchau H.
        • Mohaddes M.
        • Nemes S.
        • Rogmark C.
        • et al.
        Swedish Hip Arthroplasty Register Annual Report.
        2016https://doi.org/10.18158/SJy6jKyrM ([accessed 14.10.2019])
        • Frew N.M.
        • Cannon T.
        • Nichol T.
        • Smith T.J.
        • Stockley I.
        Comparison of the elution properties of commercially available gentamicin and bone cement containing vancomycin with “home-made” preparations.
        Bone Joint J. 2017; 99-B: 73-77https://doi.org/10.1302/0301-620X.99B1.BJJ-2016-0566.R1
        • Fillingham Y.
        • Greenwald A.S.
        • Greiner J.
        • Oshkukov S.
        • Parsa A.
        • Porteous A.
        • et al.
        Hip and knee section, prevention, local antimicrobials: proceedings of international consensus on orthopedic infections.
        J Arthroplasty. 2019; 34: S289-S292https://doi.org/10.1016/j.arth.2018.09.013
        • Newman E.T.
        • Watters T.S.
        • Lewis J.S.
        • Jennings J.M.
        • Wellman S.S.
        • Attarian D.E.
        • et al.
        Impact of perioperative allogeneic and autologous blood transfusion on acute wound infection following total knee and total hip arthroplasty.
        J Bone Joint Surg Am. 2014; 96: 279-284https://doi.org/10.2106/JBJS.L.01041
        • Carroll K.
        • Dowsey M.
        • Choong P.
        • Peel T.
        Risk factors for superficial wound complications in hip and knee arthroplasty.
        Clin Microbiol Infect. 2014; 20: 130-135https://doi.org/10.1111/1469-0691.12209
        • Innerhofer P.
        • Klingler A.
        • Klimmer C.
        • Fries D.
        • Nussbaumer W.
        Risk for postoperative infection after transfusion of white blood cell–filtered allogeneic or autologous blood components in orthopedic patients undergoing primary arthroplasty.
        Transfusion. 2005; 45: 103-110
        • Schairer W.W.
        • Nwachukwu B.U.
        • Mayman D.J.
        • Lyman S.
        • Jerabek S.A.
        Preoperative hip injections increase the rate of periprosthetic infection after total hip arthroplasty.
        J Arthroplasty. 2016; 31: 166-169.e1https://doi.org/10.1016/j.arth.2016.04.008
        • Pulido L.
        • Ghanem E.
        • Joshi A.
        • Purtill J.J.
        • Parvizi J.
        Periprosthetic joint infection: the incidence, timing, and predisposing factors.
        Clin Orthop Relat Res. 2008; 466: 1710-1715https://doi.org/10.1007/s11999-008-0209-4
        • Taneja A.
        • El-Bakoury A.
        • Khong H.
        • Railton P.
        • Sharma R.
        • Johnston K.D.
        • et al.
        Association between allogeneic blood transfusion and wound infection after total hip or knee arthroplasty: a retrospective case-control study.
        J Bone Jt Infect. 2019; 4: 99-105https://doi.org/10.7150/jbji.30636
        • Vamvakas E.C.
        • Blajchman M.A.
        Deleterious clinical effects of transfusion-associated immunomodulation: fact or fiction?.
        Blood. 2001; 97: 1180-1195
        • Weber E.W.G.
        • Slappendel R.
        • Prins M.H.
        • van der Schaaf D.B.
        • Durieux M.E.
        • Strümper D.
        Perioperative blood transfusions and delayed wound healing after hip replacement surgery: effects on duration of hospitalization.
        Anesth Analg. 2005; 100 (table of contents): 1416-1421https://doi.org/10.1213/01.ANE.0000150610.44631.9D
        • Rosencher N.
        • Kerkkamp H.E.M.
        • Macheras G.
        • Munuera L.M.
        • Menichella G.
        • Barton D.M.
        • et al.
        Orthopedic Surgery Transfusion Hemoglobin European Overview (OSTHEO) study: blood management in elective knee and hip arthroplasty in Europe.
        Transfusion. 2003; 43: 459-469https://doi.org/10.1046/j.1537-2995.2003.00348.x
        • Llewelyn C.A.
        • Taylor R.S.
        • Todd A.A.M.
        • Stevens W.
        • Murphy M.F.
        • Williamson L.M.
        • et al.
        The effect of universal leukoreduction on postoperative infections and length of hospital stay in elective orthopedic and cardiac surgery.
        Transfusion. 2004; 44: 489-500https://doi.org/10.1111/j.1537-2995.2004.03325.x
        • Kim J.L.
        • Park J.-H.
        • Han S.-B.
        • Cho I.Y.
        • Jang K.-M.
        Allogeneic blood transfusion is a significant risk factor for surgical-site infection following total hip and knee arthroplasty: a meta-analysis.
        J Arthroplasty. 2017; 32: 320-325https://doi.org/10.1016/j.arth.2016.08.026
        • Akonjom M.
        • Battenberg A.
        • Beverland D.
        • Choi J.-H.
        • Fillingham Y.
        • Gallagher N.
        • et al.
        General assembly, prevention, blood conservation: proceedings of international consensus on orthopedic infections.
        J Arthroplasty. 2019; 34: S147-S155https://doi.org/10.1016/j.arth.2018.09.065
        • Cai J.
        • Karam J.A.
        • Parvizi J.
        • Smith E.B.
        • Sharkey P.F.
        Aquacel surgical dressing reduces the rate of acute PJI following total joint arthroplasty: a case-control study.
        J Arthroplasty. 2014; 29: 1098-1100https://doi.org/10.1016/j.arth.2013.11.012
        • Grosso M.J.
        • Berg A.
        • LaRussa S.
        • Murtaugh T.
        • Trofa D.P.
        • Geller J.A.
        Silver-impregnated occlusive dressing reduces rates of acute periprosthetic joint infection after total joint arthroplasty.
        J Arthroplasty. 2017; 32: 929-932https://doi.org/10.1016/j.arth.2016.08.039
        • Springer B.D.
        • Beaver W.B.
        • Griffin W.L.
        • Mason J.B.
        • Odum S.M.
        Role of surgical dressings in total joint arthroplasty: a randomized controlled trial.
        Am J Orthop (Belle Mead NJ). 2015; 44: 415-420
        • Dobbelaere A.
        • Schuermans N.
        • Smet S.
        • Van Der Straeten C.
        • Victor J.
        Comparative study of innovative postoperative wound dressings after total knee arthroplasty.
        Acta Orthop Belg. 2015; 81: 454-461
        • Cosker T.
        • Elsayed S.
        • Gupta S.
        • Mendonca A.D.
        • Tayton K.J.J.
        Choice of dressing has a major impact on blistering and healing outcomes in orthopaedic patients.
        J Wound Care. 2005; 14: 27-29https://doi.org/10.12968/jowc.2005.14.1.26722
        • Langlois J.
        • Zaoui A.
        • Ozil C.
        • Courpied J.-P.
        • Anract P.
        • Hamadouche M.
        Randomized controlled trial of conventional versus modern surgical dressings following primary total hip and knee replacement.
        Int Orthop. 2015; 39: 1315-1319https://doi.org/10.1007/s00264-015-2726-6
        • Burke N.G.
        • Green C.
        • McHugh G.
        • McGolderick N.
        • Kilcoyne C.
        • Kenny P.
        A prospective randomised study comparing the jubilee dressing method to a standard adhesive dressing for total hip and knee replacements.
        J Tissue Viability. 2012; 21: 84-87https://doi.org/10.1016/j.jtv.2012.04.002
        • Abuzakuk T.M.
        • Coward P.
        • Shenava Y.
        • Kumar V.S.
        • Skinner J.A.
        The management of wounds following primary lower limb arthroplasty: a prospective, randomised study comparing hydrofibre and central pad dressings.
        Int Wound J. 2006; 3: 133-137
        • Ravnskog F.-A.
        • Espehaug B.
        • Indrekvam K.
        Randomised clinical trial comparing hydrofiber and alginate dressings post-hip replacement.
        J Wound Care. 2011; 20: 136-142https://doi.org/10.12968/jowc.2011.20.3.136
        • Ravenscroft M.J.
        • Harker J.
        • Buch K.A.
        A prospective, randomised, controlled trial comparing wound dressings used in hip and knee surgery: aquacel and Tegaderm versus Cutiplast.
        Ann R Coll Surg Engl. 2006; 88: 18-22https://doi.org/10.1308/003588406X82989
        • Koval K.J.
        • Egol K.A.
        • Polatsch D.B.
        • Baskies M.A.
        • Homman J.P.
        • Hiebert R.N.
        Tape blisters following hip surgery. A prospective, randomized study of two types of tape.
        J Bone Joint Surg Am. 2003; 85-A: 1884-1887
        • Lawrentschuk N.
        • Falkenberg M.P.
        • Pirpiris M.
        Wound blisters post hip surgery: a prospective trial comparing dressings.
        ANZ J Surg. 2002; 72: 716-719
        • Koval K.J.
        • Egol K.A.
        • Hiebert R.
        • Spratt K.F.
        Tape blisters after hip surgery: can they be eliminated completely?.
        Am J Orthop (Belle Mead NJ). 2007; 36: 261-265
        • Harle S.
        • Korhonen A.
        • Kettunen J.A.
        • Seitsalo S.
        A randomised clinical trial of two different wound dressing materials for hip replacement patients.
        J Orthop Nurs. 2005; 9: 205-210https://doi.org/10.1016/j.joon.2005.09.003
        • Sharma G.
        • Lee S.W.
        • Atanacio O.
        • Parvizi J.
        • Kim T.K.
        In search of the optimal wound dressing material following total hip and knee arthroplasty: a systematic review and meta-analysis.
        Int Orthop. 2017; 41: 1295-1305https://doi.org/10.1007/s00264-017-3484-4
        • Al-Houraibi R.K.
        • Aalirezaie A.
        • Adib F.
        • Anoushiravani A.
        • Bhashyam A.
        • Binlaksar R.
        • et al.
        General assembly, prevention, wound management: proceedings of International Consensus on orthopedic infections.
        J Arthroplasty. 2019; 34: S157-S168https://doi.org/10.1016/j.arth.2018.09.066
        • Tisosky A.J.
        • Iyoha-Bello O.
        • Demosthenes N.
        • Quimbayo G.
        • Coreanu T.
        • Abdeen A.
        Use of a silver nylon dressing following total hip and knee arthroplasty decreases the postoperative infection rate.
        J Am Acad Orthop Surg Glob Res Rev. 2017; 1: e034https://doi.org/10.5435/JAAOSGlobal-D-17-00034
        • Berbari E.F.
        • Hanssen A.D.
        • Duffy M.C.
        • Steckelberg J.M.
        • Ilstrup D.M.
        • Harmsen W.S.
        • et al.
        Risk factors for prosthetic joint infection: case-control study.
        Clin Infect Dis. 1998; 27: 1247-1254
        • Hansen E.
        • Durinka J.B.
        • Costanzo J.A.
        • Austin M.S.
        • Deirmengian G.K.
        Negative pressure wound therapy is associated with resolution of incisional drainage in most wounds after hip arthroplasty.
        Clin Orthop Relat Res. 2013; 471: 3230-3236https://doi.org/10.1007/s11999-013-2937-3
        • Pauser J.
        • Nordmeyer M.
        • Biber R.
        • Jantsch J.
        • Kopschina C.
        • Bail H.J.
        • et al.
        Incisional negative pressure wound therapy after hemiarthroplasty for femoral neck fractures - reduction of wound complications.
        Int Wound J. 2016; 13: 663-667https://doi.org/10.1111/iwj.12344
        • Kapadia B.H.
        • Berg R.A.
        • Daley J.A.
        • Fritz J.
        • Bhave A.
        • Mont M.A.
        Periprosthetic joint infection.
        Lancet. 2016; 387: 386-394https://doi.org/10.1016/S0140-6736(14)61798-0
        • de Jong L.
        • Klem TM.a.L.
        • Kuijper T.M.
        • Roukema G.R.
        Factors affecting the rate of surgical site infection in patients after hemiarthroplasty of the hip following a fracture of the neck of the femur.
        Bone Joint J. 2017; 99-B: 1088-1094https://doi.org/10.1302/0301-620X.99B8.BJJ-2016-1119.R1
        • Huang R.
        • Buckley P.S.
        • Scott B.
        • Parvizi J.
        • Purtill J.J.
        Administration of aspirin as a prophylaxis agent against venous thromboembolism results in lower incidence of periprosthetic joint infection.
        J Arthroplasty. 2015; 30: 39-41https://doi.org/10.1016/j.arth.2015.07.001
        • Jenny J.-Y.
        • Pabinger I.
        • Samama C.M.
        • ESA VTE Guidelines Task Force
        European guidelines on perioperative venous thromboembolism prophylaxis: aspirin.
        Eur J Anaesthesiol. 2018; 35: 123-129https://doi.org/10.1097/EJA.0000000000000728
        • Deirmengian G.K.
        • Heller S.
        • Smith E.B.
        • Maltenfort M.
        • Chen A.F.
        • Parvizi J.
        Aspirin can be used as prophylaxis for prevention of venous thromboembolism after revision hip and knee arthroplasty.
        J Arthroplasty. 2016; 31: 2237-2240https://doi.org/10.1016/j.arth.2016.03.031
        • Kulshrestha V.
        • Kumar S.
        DVT prophylaxis after TKA: routine anticoagulation vs risk screening approach - a randomized study.
        J Arthroplasty. 2013; 28: 1868-1873https://doi.org/10.1016/j.arth.2013.05.025
        • Garfinkel J.H.
        • Gladnick B.P.
        • Roland N.
        • Romness D.W.
        Increased incidence of bleeding and wound complications with factor-Xa inhibitors after total joint arthroplasty.
        J Arthroplasty. 2018; 33: 533-536https://doi.org/10.1016/j.arth.2017.08.039
      5. Overview | venous thromboembolism in over 16s: reducing the risk of hospital-acquired deep vein thrombosis or pulmonary embolism | Guidance | NICE.
        ([accessed 23.06.19])