What Is the Duration of Irrigation? An In Vitro Study of the Minimum Exposure Time to Eradicate Bacteria With Irrigation Solutions

Published:November 02, 2021DOI:https://doi.org/10.1016/j.arth.2021.10.013

      Abstract

      Background

      Antiseptic irrigation solutions are commonly used by arthroplasty surgeons to reduce intraoperative bacterial colonization with the goal of reducing postoperative infections in the setting of primary total joint arthroplasty. Currently, the minimum irrigation time to eliminate common microbes implicated in periprosthetic joint infection is unknown. We sought to determine the minimum effective exposure time required to prevent growth of Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes with common antiseptic solutions.

      Methods

      S aureus, S epidermidis, and C acnes cultures were treated with povidone-iodine (0.35%), chlorhexidine (0.05%), sodium hypochlorite (0.5%), polyhexamethylene biguanide, and an acetic acid–based solution for 15, 30, 60, 90, and 120 seconds in triplicate. Bacterial growth was quantified using the drop plate method. Failure to eliminate all bacteria was considered “not effective” at that time point.

      Results

      Povidone-iodine 0.35% (Betadine), sodium hypochlorite 0.5% (HySept), and acetic acid (Bactisure) eradicated all bacterial growth after 90 seconds of treatment, and as low as 15 seconds in S aureus and C acnes (Betadine) or S epidermidis (Bactisure). Polyhexamethylene biguanide (Prontosan) required 90 seconds for elimination of S aureus and S epidermidis, and 120 seconds for C acnes. Chlorhexidine 0.05% (Irrisept) did eliminate S epidermidis at 120 seconds but did not effectively eradicate S aureus or C acnes.

      Conclusion

      All tested antiseptic solutions demonstrated successful eradication of all bacterial growth in under 2 minutes of treatment time except chlorhexidine. Povidone-iodine may require the shortest duration of treatment time to successfully eradicate common bacteria.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Arthroplasty
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Owens B.D.
        • White D.W.
        • Wenke J.C.
        Comparison of irrigation solutions and devices in a contaminated musculoskeletal wound survival model.
        JBJS. 2009; 91: 92-98https://doi.org/10.2106/JBJS.G.01566
        • Premkumar A.
        • Nishtala S.N.
        • Nguyen J.T.
        • Bostrom M.P.G.
        • Carli A.V.
        The AAHKS best podium presentation research award: comparing the efficacy of irrigation solutions on staphylococcal biofilm formed on arthroplasty surfaces.
        J Arthroplasty. 2021; 36: S26-S32https://doi.org/10.1016/j.arth.2021.02.033
        • Van Meurs S.J.
        • Gawlitta D.
        • Heemstra K.A.
        • Poolman R.W.
        • Vogely H.C.
        • Kruyt M.C.
        Selection of an optimal antiseptic solution for intraoperative irrigation: an in vitro study.
        J Bone Joint Surg Ser A. 2014; 96: 285-291https://doi.org/10.2106/JBJS.M.00313
        • Brown N.M.
        • Cipriano C.A.
        • Moric M.
        • Sporer S.M.
        • Della Valle C.J.
        Dilute betadine lavage before closure for the prevention of acute postoperative deep periprosthetic joint infection.
        The J Arthroplasty. 2012; 27: 27-30https://doi.org/10.1016/j.arth.2011.03.034
        • Driesman A.
        • Shen M.
        • Feng J.E.
        • Waren D.
        • Slover J.
        • Bosco J.
        • et al.
        Perioperative chlorhexidine gluconate wash during joint arthroplasty has equivalent periprosthetic joint infection rates in comparison to betadine wash.
        The J Arthroplasty. 2020; 35: 845-848https://doi.org/10.1016/j.arth.2019.10.009
        • Edmiston C.E.
        • Bruden B.
        • Rucinski M.C.
        • Henen C.
        • Graham M.B.
        • Lewis B.L.
        Reducing the risk of surgical site infections: does chlorhexidine gluconate provide a risk reduction benefit?.
        Am J Infect Control. 2013; 41: S49-55https://doi.org/10.1016/j.ajic.2012.10.030
        • Kavolus J.J.
        • Schwarzkopf R.
        • Rajaee S.S.
        • Chen A.F.
        Irrigation Fluids used for the prevention and treatment of orthopaedic infections.
        JBJS. 2020; 102: 76-84https://doi.org/10.2106/JBJS.19.00566
        • Slullitel P.A.
        • Dobransky J.S.
        • Bali K.
        • Poitras S.
        • Bhullar R.S.
        • Gofton W.T.
        • et al.
        Is there a role for preclosure dilute betadine irrigation in the prevention of postoperative infection following total joint arthroplasty?.
        J Arthroplasty. 2020; 35: 1374-1378https://doi.org/10.1016/j.arth.2019.12.035
        • Cichos K.H.
        • Andrews R.M.
        • Wolschendorf F.
        • Narmore W.
        • Mabry S.E.
        • Ghanem E.S.
        Efficacy of intraoperative antiseptic techniques in the prevention of periprosthetic joint infection: superiority of betadine.
        J Arthroplasty. 2019; 34: S312-S318https://doi.org/10.1016/j.arth.2019.02.002
        • Gocke D.J.
        • Ponticas S.
        • Pollack W.
        In vitro studies of the killing of clinical isolates by povidone-iodine solutions.
        J Hosp Infect. 1985; 6: 59-66https://doi.org/10.1016/S0195-6701(85)80047-5
        • Schmidt K.
        • Estes C.
        • McLaren A.
        • Spangehl M.J.
        Chlorhexidine antiseptic irrigation eradicates Staphylococcus epidermidis from biofilm: an in vitro study.
        Clin Orthop Relat Res. 2018; 476: 648-653https://doi.org/10.1007/s11999.0000000000000052
        • Flurin L.
        • Greenwood-Quaintance K.E.
        • Patel R.
        Microbiology of polymicrobial prosthetic joint infection.
        Diagn Microbiol Infect Dis. 2019; 94: 255-259https://doi.org/10.1016/j.diagmicrobio.2019.01.006
        • Wong J.C.
        • Schoch B.S.
        • Lee B.K.
        • Sholder D.
        • Nicholson T.
        • Namdari S.
        • et al.
        Culture positivity in primary total shoulder arthroplasty.
        J Shoulder Elbow Surg. 2018; 27: 1422-1428https://doi.org/10.1016/j.jse.2018.05.024
        • Villa J.M.
        • Pannu T.S.
        • Theeb I.
        • Buttaro M.A.
        • Oñativia J.I.
        • Carbo L.
        • et al.
        International organism profile of periprosthetic total hip and knee infections.
        J Arthroplasty. 2021; 36: 274-278https://doi.org/10.1016/j.arth.2020.07.020
        • Dirschl D.R.
        • Wilson F.C.
        Topical antibiotic irrigation in the prophylaxis of operative wound infections in orthopedic surgery.
        Orthop Clin North America. 1991; 22: 419-426https://doi.org/10.1016/S0030-5898(20)31671-0
        • Kia C.
        • Cusano A.
        • Messina J.
        • Muench L.N.
        • Chadayammuri V.
        • McCarthy M.B.
        • et al.
        Effectiveness of topical adjuvants in reducing biofilm formation on orthopedic implants: an in vitro analysis.
        J Shoulder Elbow Surg. 2021; 30: 2177-2183https://doi.org/10.1016/j.jse.2020.12.009
        • ATCC Guidelines
        Staphylococcus aureus subsp. aureus Rosenbach ATCC ® 49230TM n.d.
        ([accessed 30.04.21])
        • ATCC Guidelines
        Staphylococcus epidermidis (Winslow and Winslow) Evans ATCC ® 3598 n.d.
        ([accessed 30.04.21])
        • ATCC Guidelines
        Cutibacterium acnes Scholz and Kilian ATCC ® 6919TM n.d.
        ([accessed 30.04.21])
        • Goswami K.
        • Cho J.
        • Foltz C.
        • Manrique J.
        • Tan T.L.
        • Fillingham Y.
        • et al.
        Polymyxin and bacitracin in the irrigation solution provide No benefit for bacterial killing in vitro.
        JBJS. 2019; 101: 1689-1697https://doi.org/10.2106/JBJS.18.01362
        • Herigstad B.
        • Hamilton M.
        • Heersink J.
        How to optimize the drop plate method for enumerating bacteria.
        J Microbiol Methods. 2001; 44: 121-129https://doi.org/10.1016/s0167-7012(00)00241-4
        • Kerbel Y.E.
        • Kirchner G.J.
        • Sunkerneni A.R.
        • Lieber A.M.
        • Moretti V.M.
        The cost effectiveness of dilute betadine lavage for infection prophylaxis in total joint arthroplasty.
        J Arthroplasty. 2019; 34: S307-S311https://doi.org/10.1016/j.arth.2019.02.042
        • O’Donnell J.A.
        • Wu M.
        • Cochrane N.H.
        • Belay E.
        • Myntti M.F.
        • James G.A.
        • et al.
        Efficacy of common antiseptic solutions against clinically relevant microorganisms in biofilm.
        Bone Joint J. 2021; 103-B: 908-915https://doi.org/10.1302/0301-620X.103B5.BJJ-2020-1245.R2
        • Goswami K.
        • Austin M.S.
        Intraoperative povidone-iodine irrigation for infection prevention.
        Arthroplasty Today. 2019; 5: 306-308https://doi.org/10.1016/j.artd.2019.04.004
        • Szkołuda P.
        • Karpiński T.M.
        Polyhexanide (PHMB) – properties and applications in medicine.
        Eur J Biol Res. 2020; 10: 225-231
        • Smith D.C.
        • Maiman R.
        • Schwechter E.M.
        • Kim S.J.
        • Hirsh D.M.
        Optimal irrigation and debridement of infected total joint implants with chlorhexidine gluconate.
        J Arthroplasty. 2015; 30: 1820-1822https://doi.org/10.1016/j.arth.2015.05.005
        • Newton Ede M.P.
        • Philp A.M.
        • Philp A.
        • Richardson S.M.
        • Mohammad S.
        • Jones S.W.
        Povidone-iodine has a profound effect on in vitro osteoblast proliferation and metabolic function and inhibits their ability to mineralize and form bone.
        Spine. 2016; 41: 729-734https://doi.org/10.1097/BRS.0000000000001332
        • van Huyssteen A.L.
        • Bracey D.J.
        Chlorhexidine and chondrolysis in the knee.
        J Bone Joint Surg Br. 1999; 81: 995-996https://doi.org/10.1302/0301-620x.81b6.9719
        • Röhner E.
        • Jacob B.
        • Böhle S.
        • Rohe S.
        • Löffler B.
        • Matziolis G.
        • et al.
        Sodium hypochlorite is more effective than chlorhexidine for eradication of bacterial biofilm of staphylococci and Pseudomonas aeruginosa.
        Knee Surg Sports Traumatol Arthrosc. 2020; 28: 3912-3918https://doi.org/10.1007/s00167-020-05887-9
        • Röhner E.
        • Seeger J.B.
        • Hoff P.
        • Pfitzner T.
        • Preininger B.
        • Andreas K.
        • et al.
        Preferred use of polyhexanide in orthopedic surgery.
        Orthopedics. 2011; 34: e664-668https://doi.org/10.3928/01477447-20110826-10