Revision Risk in a Cohort of US Patients Younger Than 55 Undergoing Primary Elective Total Hip Arthroplasty

Published:October 27, 2021DOI:https://doi.org/10.1016/j.arth.2021.10.014

      Abstract

      Background

      As indications for elective total hip arthroplasty (THA) expand to younger patients, we sought to (1) compare revision risk following primary elective THA in patients <55 years at the time of their THA to patients aged ≥65 years and (2) identify specific risk factors for revision in patients <55 years.

      Methods

      A Kaiser Permanente's total joint replacement registry was used to conduct a cohort study including primary elective THA patients aged ≥18 (2001-2018). In total, 11,671 patients <55 years and 53,106 patients ≥65 years were included. Multiple Cox regression was used to evaluate cause-specific revision risk, including septic revision, aseptic loosening, instability, and periprosthetic fracture. Stepwise Cox regression was used to identify patient and surgical factors associated with cause-specific revision in patients <55 years.

      Results

      Patients <55 years had a higher risk of septic revision (hazard ratio [HR] = 1.30, 95% confidence interval [CI] = 1.02-1.66), aseptic loosening (HR = 2.60, 95% CI = 1.99-3.40), and instability (HR = 1.35, 95% CI = 1.09-1.68), but a lower risk of revision for periprosthetic fracture (HR = 0.36, 95% CI = 0.22-0.59) compared to patients aged ≥65 years. In the <55 age group, risk factors for septic revision included higher body mass index, drug abuse, and liver disease. Hypertension, anterior approach, and ceramic-on-ceramic were associated with aseptic loosening. White race, American Society of Anesthesiologists classification ≥3, smoker, paralysis, posterior approach, ceramic-on-ceramic, and smaller head diameter were associated with instability.

      Conclusion

      Identified risk factors varied depending on the cause for revision. Although septic revisions were related to patient characteristics, more modifiable factors, such as implant or surgical approach, were associated with revision due to aseptic loosening and instability.

      Level of Evidence

      III.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Arthroplasty
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kurtz S.M.
        • Lau E.
        • Ong K.
        • Zhao K.
        • Kelly M.
        • Bozic K.J.
        Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030.
        Clin Orthop Relat Res. 2009; 467: 2606-2612https://doi.org/10.1007/s11999-009-0834-6
        • Joly D.A.
        • Ludwig T.
        • Mahdavi S.
        • Khong H.
        • Piroozfar S.G.
        • Sharma R.
        Does age Influence patient-reported outcomes in Unilateral primary total hip and knee arthroplasty?.
        J Arthroplasty. 2020; 35: 1800-1805https://doi.org/10.1016/j.arth.2020.02.053
        • Wainwright C.
        • Theis J.C.
        • Garneti N.
        • Melloh M.
        Age at hip or knee joint replacement surgery predicts likelihood of revision surgery.
        J Bone Joint Surg Br. 2011; 93: 1411-1415https://doi.org/10.1302/0301-620x.93b10.27100
        • Mei X.Y.
        • Gong Y.J.
        • Safir O.
        • Gross A.
        • Kuzyk P.
        Long-term outcomes of total hip arthroplasty in patients younger than 55 years: a systematic review of the contemporary literature.
        Can J Surg. 2019; 62: 249-258https://doi.org/10.1503/cjs.013118
        • Prokopetz J.J.
        • Losina E.
        • Bliss R.L.
        • Wright J.
        • Baron J.A.
        • Katz J.N.
        Risk factors for revision of primary total hip arthroplasty: a systematic review.
        BMC Musculoskelet Disord. 2012; 13: 251https://doi.org/10.1186/1471-2474-13-251
        • Bayliss L.E.
        • Culliford D.
        • Monk A.P.
        • Glyn-Jones S.
        • Prieto-Alhambra D.
        • Judge A.
        • et al.
        The effect of patient age at intervention on risk of implant revision after total replacement of the hip or knee: a population-based cohort study.
        Lancet. 2017; 389: 1424-1430https://doi.org/10.1016/s0140-6736(17)30059-4
        • Makarewich C.A.
        • Anderson M.B.
        • Gililland J.M.
        • Pelt C.E.
        • Peters C.L.
        Ten-year survivorship of primary total hip arthroplasty in patients 30 years of age or younger.
        Bone Joint J. 2018; 100-b: 867-874https://doi.org/10.1302/0301-620x.100b7.Bjj-2017-1603.R1
        • Nugent M.
        • Young S.W.
        • Frampton C.M.
        • Hooper G.J.
        The lifetime risk of revision following total hip arthroplasty.
        Bone Joint J. 2021; 103-b: 479-485https://doi.org/10.1302/0301-620x.103b3.Bjj-2020-0562.R2
        • Halawi M.J.
        • Brigati D.
        • Messner W.
        • Brooks P.J.
        Total hip arthroplasty in patients 55 years or younger: risk factors for poor midterm outcomes.
        J Clin Orthop Trauma. 2018; 9: 103-106https://doi.org/10.1016/j.jcot.2016.12.009
        • Kuijpers M.F.L.
        • Hannink G.
        • Vehmeijer S.B.W.
        • van Steenbergen L.N.
        • Schreurs B.W.
        The risk of revision after total hip arthroplasty in young patients depends on surgical approach, femoral head size and bearing type; an analysis of 19,682 operations in the Dutch arthroplasty register.
        BMC Musculoskelet Disord. 2019; 20: 385https://doi.org/10.1186/s12891-019-2765-z
        • Paxton E.W.
        • Cafri G.
        • Nemes S.
        • Lorimer M.
        • Kärrholm J.
        • Malchau H.
        • et al.
        An international comparison of THA patients, implants, techniques, and survivorship in Sweden, Australia, and the United States.
        Acta Orthop. 2019; 90: 148-152https://doi.org/10.1080/17453674.2019.1574395
        • Karachalios T.
        • Komnos G.
        • Koutalos A.
        Total hip arthroplasty: survival and modes of failure.
        EFORT Open Rev. 2018; 3: 232-239https://doi.org/10.1302/2058-5241.3.170068
        • Karter A.J.
        • Ferrara A.
        • Liu J.Y.
        • Moffet H.H.
        • Ackerson L.M.
        • Selby J.V.
        Ethnic disparities in diabetic complications in an insured population.
        JAMA. 2002; 287: 2519-2527
        • Koebnick C.
        • Langer-Gould A.M.
        • Gould M.K.
        • Chao C.R.
        • Iyer R.L.
        • Smith N.
        • et al.
        Sociodemographic characteristics of members of a large, integrated health care system: comparison with US Census Bureau data.
        Perm J. 2012; 16: 37-41
        • Paxton E.W.
        • Inacio M.C.
        • Khatod M.
        • Yue E.J.
        • Namba R.S.
        Kaiser Permanente national total joint replacement registry: aligning operations with information technology.
        Clin Orthop Relat Res. 2010; 468: 2646-2663https://doi.org/10.1007/s11999-010-1463-9
        • Paxton E.W.
        • Kiley M.L.
        • Love R.
        • Barber T.C.
        • Funahashi T.T.
        • Inacio M.C.
        Kaiser Permanente implant registries benefit patient safety, quality improvement, cost-effectiveness.
        Jt Comm J Qual Patient Saf. 2013; 39: 246-252
        • Elixhauser A.
        • Steiner C.
        • Harris D.R.
        • Coffey R.M.
        Comorbidity measures for use with administrative data.
        Med Care. 1998; 36: 8-27https://doi.org/10.1097/00005650-199801000-00004
        • Quan H.
        • Sundararajan V.
        • Halfon P.
        • Fong A.
        • Burnand B.
        • Luthi J.C.
        • et al.
        Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data.
        Med Care. 2005; 43: 1130-1139https://doi.org/10.1097/01.mlr.0000182534.19832.83
        • Clark T.G.
        • Altman D.G.
        • De Stavola B.L.
        Quantification of the completeness of follow-up.
        Lancet. 2002; 359: 1309-1310https://doi.org/10.1016/s0140-6736(02)08272-7
        • Wood A.M.
        • White I.R.
        • Royston P.
        How should variable selection be performed with multiply imputed data?.
        Stat Med. 2008; 27: 3227-3246https://doi.org/10.1002/sim.3177
        • Rubin D.M.
        Multiple imputation for nonresponse in surveys.
        Wiley, New York1987
        • Namba R.S.
        • Inacio M.C.
        • Paxton E.W.
        Risk factors associated with surgical site infection in 30,491 primary total hip replacements.
        J Bone Joint Surg Br. 2012; 94: 1330-1338https://doi.org/10.1302/0301-620x.94b10.29184
        • Kunutsor S.K.
        • Whitehouse M.R.
        • Blom A.W.
        • Beswick A.D.
        Patient-related risk factors for periprosthetic joint infection after total joint arthroplasty: a systematic review and meta-analysis.
        PLoS One. 2016; 11: e0150866https://doi.org/10.1371/journal.pone.0150866
        • Wagner E.R.
        • Kamath A.F.
        • Fruth K.M.
        • Harmsen W.S.
        • Berry D.J.
        Effect of body mass index on complications and reoperations after total hip arthroplasty.
        J Bone Joint Surg Am. 2016; 98: 169-179https://doi.org/10.2106/jbjs.O.00430
        • Smith J.O.
        • Frampton C.M.A.
        • Hooper G.J.
        • Young S.W.
        The impact of patient and surgical factors on the rate of postoperative infection after total hip arthroplasty-A New Zealand joint registry study.
        J Arthroplasty. 2018; 33: 1884-1890https://doi.org/10.1016/j.arth.2018.01.021
        • DeMik D.E.
        • Bedard N.A.
        • Dowdle S.B.
        • Elkins J.M.
        • Brown T.S.
        • Gao Y.
        • et al.
        Complications and obesity in arthroplasty-A hip is not a knee.
        J Arthroplasty. 2018; 33: 3281-3287https://doi.org/10.1016/j.arth.2018.02.073
        • Lenguerrand E.
        • Whitehouse M.R.
        • Beswick A.D.
        • Kunutsor S.K.
        • Burston B.
        • Porter M.
        • et al.
        Risk factors associated with revision for prosthetic joint infection after hip replacement: a prospective observational cohort study.
        Lancet Infect Dis. 2018; 18: 1004-1014https://doi.org/10.1016/s1473-3099(18)30345-1
        • Sayed-Noor A.S.
        • Mukka S.
        • Mohaddes M.
        • Kärrholm J.
        • Rolfson O.
        Body mass index is associated with risk of reoperation and revision after primary total hip arthroplasty: a study of the Swedish Hip Arthroplasty Register including 83,146 patients.
        Acta Orthop. 2019; 90: 220-225https://doi.org/10.1080/17453674.2019.1594015
        • Zhong J.
        • Wang B.
        • Chen Y.
        • Li H.
        • Lin N.
        • Xu X.
        • et al.
        Relationship between body mass index and the risk of periprosthetic joint infection after primary total hip arthroplasty and total knee arthroplasty.
        Ann Transl Med. 2020; 8: 464https://doi.org/10.21037/atm.2020.03.112
        • Peters R.M.
        • van Steenbergen L.N.
        • Stewart R.E.
        • Stevens M.
        • Rijk P.C.
        • Bulstra S.K.
        • et al.
        Patient characteristics Influence revision rate of total hip arthroplasty: American Society of Anesthesiologists Score and body mass index were the strongest predictors for Short-term revision after primary total hip arthroplasty.
        J Arthroplasty. 2020; 35: 188-192.e2https://doi.org/10.1016/j.arth.2019.08.024
        • Tan T.L.
        • Maltenfort M.G.
        • Chen A.F.
        • Shahi A.
        • Higuera C.A.
        • Siqueira M.
        • et al.
        Development and evaluation of a preoperative risk calculator for periprosthetic joint infection following total joint arthroplasty.
        J Bone Joint Surg Am. 2018; 100: 777-785https://doi.org/10.2106/jbjs.16.01435
        • Onochie E.
        • Kayani B.
        • Dawson-Bowling S.
        • Millington S.
        • Achan P.
        • Hanna S.
        Total hip arthroplasty in patients with chronic liver disease: a systematic review.
        Sicot j. 2019; 5: 40https://doi.org/10.1051/sicotj/2019037
        • Deleuran T.
        • Vilstrup H.
        • Overgaard S.
        • Jepsen P.
        Cirrhosis patients have increased risk of complications after hip or knee arthroplasty.
        Acta Orthop. 2015; 86: 108-113https://doi.org/10.3109/17453674.2014.961397
        • Sequeira S.B.
        • Labaran L.A.
        • Bell J.E.
        • Amin R.M.
        • Rao S.S.
        • Werner B.C.
        Compensated cirrhosis is associated with increased risk of complications following total hip arthroplasty in a large Medicare database.
        J Arthroplasty. 2021; 36: 1361-1366.e1https://doi.org/10.1016/j.arth.2020.10.008
        • Johnson N.R.
        • Statz J.M.
        • Odum S.M.
        • Otero J.E.
        Failure to optimize before total knee arthroplasty: which modifiable risk factor is the most dangerous?.
        J Arthroplasty. 2021; 36: 2452-2457https://doi.org/10.1016/j.arth.2021.02.061
        • Bedair H.S.
        • Schurko B.M.
        • Dwyer M.K.
        • Novikov D.
        • Anoushiravani A.A.
        • Schwarzkopf R.
        Treatment for chronic hepatitis C prior to total hip arthroplasty significantly reduces periprosthetic joint infection.
        J Arthroplasty. 2019; 34: 132-135https://doi.org/10.1016/j.arth.2018.09.036
        • Cherian J.J.
        • Jauregui J.J.
        • Banerjee S.
        • Pierce T.
        • Mont M.A.
        What Host factors Affect aseptic loosening after THA and TKA?.
        Clin Orthop Relat Res. 2015; 473: 2700-2709https://doi.org/10.1007/s11999-015-4220-2
        • Onggo J.R.
        • Onggo J.D.
        • de Steiger R.
        • Hau R.
        Greater risks of complications, infections, and revisions in the obese versus non-obese total hip arthroplasty population of 2,190,824 patients: a meta-analysis and systematic review.
        Osteoarthritis Cartilage. 2020; 28: 31-44https://doi.org/10.1016/j.joca.2019.10.005
        • Cleven L.
        • Krell-Roesch J.
        • Nigg C.R.
        • Woll A.
        The association between physical activity with incident obesity, coronary heart disease, diabetes and hypertension in adults: a systematic review of longitudinal studies published after 2012.
        BMC Public Health. 2020; 20: 726https://doi.org/10.1186/s12889-020-08715-4
        • Division of Nutrition, Physical Activity, and Obesity
        Adult Obesity Causes & Consequences.
        in: Overweight & obesity. Centers for Disease Control and Prevention, Atlanta, GA2021
        • Okike K.
        • Chan P.H.
        • Prentice H.A.
        • Navarro R.A.
        • Hinman A.D.
        • Paxton E.W.
        Association of race and Ethnicity with total hip arthroplasty outcomes in a Universally insured population.
        J Bone Joint Surg Am. 2019; 101: 1160-1167https://doi.org/10.2106/jbjs.18.01316
        • Hooper G.J.
        • Rothwell A.G.
        • Hooper N.M.
        • Frampton C.
        The relationship between the American Society of Anesthesiologists physical rating and outcome following total hip and knee arthroplasty: an analysis of theNew Zealand Joint Registry.
        J Bone Joint Surg Am. 2012; 94: 1065-1070https://doi.org/10.2106/jbjs.J.01681
        • Ferguson R.J.
        • Silman A.J.
        • Combescure C.
        • Bulow E.
        • Odin D.
        • Hannouche D.
        • et al.
        ASA class is associated with early revision and reoperation after total hip arthroplasty: an analysis of the Geneva and Swedish Hip Arthroplasty Registries.
        Acta Orthop. 2019; 90: 324-330https://doi.org/10.1080/17453674.2019.1605785
        • Singh J.A.
        • Schleck C.
        • Harmsen W.S.
        • Jacob A.K.
        • Warner D.O.
        • Lewallen D.G.
        Current tobacco use is associated with higher rates of implant revision and deep infection after total hip or knee arthroplasty: a prospective cohort study.
        BMC Med. 2015; 13: 283https://doi.org/10.1186/s12916-015-0523-0
        • Teng S.
        • Yi C.
        • Krettek C.
        • Jagodzinski M.
        Smoking and risk of prosthesis-related complications after total hip arthroplasty: a meta-analysis of cohort studies.
        PLoS One. 2015; 10: e0125294https://doi.org/10.1371/journal.pone.0125294
        • Matharu G.S.
        • Mouchti S.
        • Twigg S.
        • Delmestri A.
        • Murray D.W.
        • Judge A.
        • et al.
        The effect of smoking on outcomes following primary total hip and knee arthroplasty: a population-based cohort study of 117,024 patients.
        Acta Orthop. 2019; 90: 559-567https://doi.org/10.1080/17453674.2019.1649510
        • Bissias C.
        • Kaspiris A.
        • Kalogeropoulos A.
        • Papoutsis K.
        • Natsioulas N.
        • Barbagiannis K.
        • et al.
        Factors affecting the incidence of postoperative periprosthetic fractures following primary and revision hip arthroplasty: a systematic review and meta-analysis.
        J Orthop Surg Res. 2021; 16: 15https://doi.org/10.1186/s13018-020-02152-0
        • Khatod M.
        • Cafri G.
        • Namba R.S.
        • Inacio M.C.
        • Paxton E.W.
        Risk factors for total hip arthroplasty aseptic revision.
        J Arthroplasty. 2014; 29: 1412-1417https://doi.org/10.1016/j.arth.2014.01.023
        • Pijls B.G.
        • Meessen J.M.
        • Schoones J.W.
        • Fiocco M.
        • van der Heide H.J.
        • Sedrakyan A.
        • et al.
        Increased mortality in metal-on-metal versus non-metal-on-metal primary total hip arthroplasty at 10 Years and longer follow-up: a systematic review and meta-analysis.
        PLoS One. 2016; 11: e0156051https://doi.org/10.1371/journal.pone.0156051
      1. Concerns about metal-on-metal hip implants.
        U.S. Food & Drug Administration, Silver Spring, MD2019
        • Tsikandylakis G.
        • Overgaard S.
        • Zagra L.
        • Kärrholm J.
        Global diversity in bearings in primary THA.
        EFORT Open Rev. 2020; 5: 763-775https://doi.org/10.1302/2058-5241.5.200002
        • Hwang K.T.
        • Kim Y.H.
        • Kim Y.S.
        • Choi I.Y.
        Cementless total hip arthroplasty with a metal-on-metal bearing in patients younger than 50 years.
        J Arthroplasty. 2011; 26: 1481-1487https://doi.org/10.1016/j.arth.2011.02.020
        • Kim Y.H.
        • Kim J.S.
        • Park J.W.
        • Joo J.H.
        Comparison of total hip replacement with and without cement in patients younger than 50 years of age: the results at 18 years.
        J Bone Joint Surg Br. 2011; 93: 449-455https://doi.org/10.1302/0301-620x.93b4.26149
        • Mäkelä K.T.
        • Matilainen M.
        • Pulkkinen P.
        • Fenstad A.M.
        • Havelin L.
        • Engesaeter L.
        • et al.
        Failure rate of cemented and uncemented total hip replacements: register study of combined Nordic database of four nations.
        BMJ. 2014; 348: f7592https://doi.org/10.1136/bmj.f7592
        • Pedersen A.B.
        • Mehnert F.
        • Havelin L.I.
        • Furnes O.
        • Herberts P.
        • Kärrholm J.
        • et al.
        Association between fixation technique and revision risk in total hip arthroplasty patients younger than 55 years of age. Results from the Nordic Arthroplasty Register Association.
        Osteoarthritis Cartil. 2014; 22: 659-667https://doi.org/10.1016/j.joca.2014.03.005
        • Jameson S.S.
        • Mason J.
        • Baker P.
        • Gregg P.J.
        • Porter M.
        • Deehan D.J.
        • et al.
        Have cementless and resurfacing components improved the medium-term results of hip replacement for patients under 60 years of age?.
        Acta Orthop. 2015; 86: 7-17https://doi.org/10.3109/17453674.2014.972256
        • Angerame M.R.
        • Fehring T.K.
        • Masonis J.L.
        • Mason J.B.
        • Odum S.M.
        • Springer B.D.
        Early failure of primary total hip arthroplasty: is surgical approach a risk factor?.
        J Arthroplasty. 2018; 33: 1780-1785https://doi.org/10.1016/j.arth.2018.01.014
        • Janssen L.
        • Wijnands K.A.P.
        • Janssen D.
        • Janssen M.
        • Morrenhof J.W.
        Do Stem Design and surgical approach Influence early aseptic loosening in cementless THA?.
        Clin Orthop Relat Res. 2018; 476: 1212-1220https://doi.org/10.1007/s11999.0000000000000208
        • Charney M.
        • Paxton E.W.
        • Stradiotto R.
        • Lee J.J.
        • Hinman A.D.
        • Sheth D.S.
        • et al.
        A comparison of risk of dislocation and cause-specific revision between direct anterior and posterior approach following elective cementless total hip arthroplasty.
        J Arthroplasty. 2020; 35: 1651-1657https://doi.org/10.1016/j.arth.2020.01.033
        • Hoskins W.
        • Bingham R.
        • Lorimer M.
        • Hatton A.
        • de Steiger R.N.
        Early rate of revision of total hip arthroplasty related to surgical approach: an analysis of 122,345 primary total hip Arthroplasties.
        J Bone Joint Surg Am. 2020; 102: 1874-1882https://doi.org/10.2106/jbjs.19.01289
        • Tsikandylakis G.
        • Mohaddes M.
        • Cnudde P.
        • Eskelinen A.
        • Kärrholm J.
        • Rolfson O.
        Head size in primary total hip arthroplasty.
        EFORT Open Rev. 2018; 3: 225-231https://doi.org/10.1302/2058-5241.3.170061
        • Shin E.H.
        • Moon K.H.
        Cementless total hip arthroplasty in young patients under the age of 30: a minimum 10-year follow-up.
        Hip Int. 2018; 28: 507-513https://doi.org/10.1177/1120700017752339