Intraoperative Imaging in Total Hip Arthroplasty is Cost-effective Regardless of Surgical Approach

Published:January 05, 2022DOI:https://doi.org/10.1016/j.arth.2021.12.039

      Abstract

      Background

      Component positioning in total hip arthroplasty (THA) may be improved with utilization of intraoperative imaging. The purpose of this study was to determine if intraoperative imaging during THA is cost-effective.

      Methods

      A break-even analysis was used as a model for cost-effectiveness, which incorporates cost of imaging (including direct charges and the additional time required for imaging), rate of revision surgery, and cost of revision surgery, yielding a final revision rate that needs to be achieved with use of intraoperative imaging in order for its use to be; cost-effective. Absolute risk reduction (ARR) is determined by the difference between the initial revision rate and final revision rate.

      Results

      At an anticipated institutional cost of $120 and requiring 4 additional minutes, intraoperative fluoroscopy would be cost-effective if the baseline rate of revision due to component mispositioning (0.62%) is reduced to 0.46%. Intraoperative flat plate radiographs ($127) are cost-effective at an ARR of 0.16%. Cost-effectiveness is achieved with lower ARR in the setting of lower imaging costs ($15, ARR 0.02%), and higher ARR with higher imaging costs ($225, ARR 0.29%). ARR for cost-effectiveness is independent of baseline revision rate, but varies with the cost of revision procedures.

      Conclusion

      At current revision rates for component malpositioning, only 1 revision among 400 THAs needs to be prevented for the utilization of fluoroscopy (or 1 in 385 THAs with flat plate imaging), to achieve cost-effectiveness.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Arthroplasty
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lewinnek G.E.
        • Lewis J.L.
        • Tarr R.
        • Compere C.L.
        • Zimmerman J.R.
        Dislocations after total hip-replacement arthroplasties.
        J Bone Jt Surg - Ser A. 1978; 60 Ahttps://doi.org/10.2106/00004623-197860020-00014
        • Seagrave K.G.
        • Troelsen A.
        • Malchau H.
        • Husted H.
        • Gromov K.
        Acetabular cup position and risk of dislocation in primary total hip arthroplasty.
        Acta Orthop. 2017; 88https://doi.org/10.1080/17453674.2016.1251255
        • Reina N.
        • Putman S.
        • Desmarchelier R.
        • Sari Ali E.
        • Chiron P.
        • Ollivier M.
        • et al.
        Can a target zone safer than Lewinnek’s safe zone be defined to prevent instability of total hip arthroplasties? Case-control study of 56 dislocated THA and 93 matched controls.
        Orthop Traumatol Surg Res. 2017; 103https://doi.org/10.1016/j.otsr.2017.05.015
        • Callanan M.C.
        • Jarrett B.
        • Bragdon C.R.
        • Zurakowski D.
        • Rubash H.E.
        • Freiberg A.A.
        • et al.
        The john charnley award: Risk factors for cup malpositioning: Quality improvement through a joint registry at a tertiary hospital.
        Clin. Orthop. Relat. Res. 2011; 469https://doi.org/10.1007/s11999-010-1487-1
        • Abdel M.P.
        • von Roth P.
        • Jennings M.T.
        • Hanssen A.D.
        • Pagnano M.W.
        What Safe Zone? The Vast Majority of Dislocated THAs Are Within the Lewinnek Safe Zone for Acetabular Component Position.
        Clin Orthop Relat Res. 2016; 474https://doi.org/10.1007/s11999-015-4432-5
        • Kurtz W.B.
        • Ecker T.M.
        • Reichmann W.M.
        • Murphy S.B.
        Factors affecting bony impingement in hip arthroplasty.
        J Arthroplasty. 2010; 25https://doi.org/10.1016/j.arth.2009.03.024
        • Shoji T.
        • Yamasaki T.
        • Izumi S.
        • Kenji M.
        • Sawa M.
        • Yasunaga Y.
        • et al.
        The effect of cup medialization and lateralization on hip range of motion in total hip arthroplasty.
        Clin Biomech. 2018; 57https://doi.org/10.1016/j.clinbiomech.2018.06.011
        • McCarthy T.F.
        • Alipit V.
        • Nevelos J.
        • Elmallah R.K.
        • Mont M.A.
        Acetabular Cup Anteversion and Inclination in Hip Range of Motion to Impingement.
        J Arthroplasty. 2016; 31https://doi.org/10.1016/j.arth.2016.01.067
        • Parvizi J.
        • Sharkey P.F.
        • Bissett G.A.
        • Rothman R.H.
        • Hozack W.J.
        Surgical Treatment of Limb-Length Discrepancy Following Total Hip Arthroplasty.
        J Bone Jt Surg - Ser A. 2003; 85https://doi.org/10.2106/00004623-200312000-00007
        • Hofmann A.A.
        • Skrzynski M.C.
        Leg-length inequality and nerve palsy in total hip arthroplasty: A lawyer awaits.
        Orthopedics. 2000; 23https://doi.org/10.3928/0147-7447-20000901-20
        • Gwam C.U.
        • Mistry J.B.
        • Mohamed N.S.
        • Thomas M.
        • Bigart K.C.
        • Mont M.A.
        • et al.
        Current Epidemiology of Revision Total Hip Arthroplasty in the United States: National Inpatient Sample 2009 to 2013.
        J Arthroplasty. 2017; 32https://doi.org/10.1016/j.arth.2017.02.046
        • Biedermann R.
        • Tonin A.
        • Krismer M.
        • Rachbauer F.
        • Eibl G.
        • Stockl B.
        Reducing the risk of dislocation after total hip arthroplasty: the effect of orientation of the acetabular component.
        Bone Joint J. 2005; 87
        • Bozic K.J.
        • Kamath A.F.
        • Ong K.
        • Lau E.
        • Kurtz S.
        • Chan V.
        • et al.
        Comparative Epidemiology of Revision Arthroplasty: Failed THA Poses Greater Clinical and Economic Burdens Than Failed TKA.
        Clin Orthop Relat Res. 2015; 473https://doi.org/10.1007/s11999-014-4078-8
        • Angerame M.R.
        • Fehring T.K.
        • Masonis J.L.
        • Mason J.B.
        • Odum S.M.
        • Springer B.D.
        Early Failure of Primary Total Hip Arthroplasty: Is Surgical Approach a Risk Factor?.
        J Arthroplasty. 2018; 33https://doi.org/10.1016/j.arth.2018.01.014
        • Jennings J.D.
        • Iorio J.
        • Kleiner M.T.
        • Gaughan J.P.
        • Star A.M.
        Intraoperative fluoroscopy improves component position during anterior hip arthroplasty.
        Orthopedics. 2015; 38https://doi.org/10.3928/01477447-20151020-04
        • Slotkin E.M.
        • Patel P.D.
        • Suarez J.C.
        Accuracy of Fluoroscopic Guided Acetabular Component Positioning During Direct Anterior Total Hip Arthroplasty.
        J Arthroplasty. 2015; 30https://doi.org/10.1016/j.arth.2015.03.046
        • Holst D.C.
        • Levy D.L.
        • Angerame M.R.
        • Yang C.C.
        Does the use of intraoperative fluoroscopy improve postoperative radiographic component positioning and implant size in total hip arthroplasty utilizing a direct anterior approach?.
        Arthroplast Today. 2020; 6https://doi.org/10.1016/j.artd.2019.11.006
        • Bingham J.S.
        • Spangehl M.J.
        • Hines J.T.
        • Taunton M.J.
        • Schwartz A.J.
        Does Intraoperative Fluoroscopy Improve Limb-Length Discrepancy and Acetabular Component Positioning During Direct Anterior Total Hip Arthroplasty?.
        J Arthroplasty. 2018; 33https://doi.org/10.1016/j.arth.2018.05.004
        • Penenberg B.L.
        • Samagh S.P.
        • Rajaee S.S.
        • Woehnl A.
        • Brien W.W.
        Digital radiography in total hip arthroplasty. Technique and Radiographic Results.
        J Bone Jt Surg - Am Vol. 2018; 100
        • Belyea C.M.
        • Lansford J.L.
        • Yim D.G.
        Utility of Intraoperative Fluoroscopic Positioning of Total Hip Arthroplasty Components Using a Posterior and Direct Anterior Approach.
        Mil Med. 2020; https://doi.org/10.1093/milmed/usaa415
        • Hatch M.D.
        • Daniels S.D.
        • Glerum K.M.
        • Higgins L.D.
        The cost effectiveness of vancomycin for preventing infections after shoulder arthroplasty: a break-even analysis.
        J Shoulder Elb Surg. 2017; 26https://doi.org/10.1016/j.jse.2016.07.071
        • Childers C.P.
        • Maggard-Gibbons M.
        Understanding costs of care in the operating room.
        JAMA Surg. 2018; 153https://doi.org/10.1001/jamasurg.2017.6233
        • Clair A.J.
        • Evangelista P.J.
        • Lajam C.M.
        • Slover J.D.
        • Bosco J.A.
        • Iorio R.
        Cost Analysis of Total Joint Arthroplasty Readmissions in a Bundled Payment Care Improvement Initiative.
        J Arthroplasty. 2016; 31https://doi.org/10.1016/j.arth.2016.02.029
        • Whitcomb W.F.
        • Lagu T.
        • Krushell R.J.
        • Lehman A.P.
        • Greenbaum J.
        • McGirr J.
        • et al.
        Experience with designing and implementing a bundled payment program for total hip replacement.
        Jt Comm J Qual Patient Saf. 2015; 41https://doi.org/10.1016/S1553-7250(15)41052-9
        • Siddiqi A.
        • White P.B.
        • Mistry J.B.
        • Gwam C.U.
        • Nace J.
        • Mont M.A.
        • et al.
        Effect of Bundled Payments and Health Care Reform as Alternative Payment Models in Total Joint Arthroplasty: A Clinical Review.
        J Arthroplasty. 2017; 32https://doi.org/10.1016/j.arth.2017.03.027
        • Ryan S.P.
        • Goltz D.E.
        • Howell C.B.
        • Jiranek W.A.
        • Attarian D.E.
        • Bolognesi M.P.
        • et al.
        Predicting Costs Exceeding Bundled Payment Targets for Total Joint Arthroplasty.
        J Arthroplasty. 2019; 34https://doi.org/10.1016/j.arth.2018.11.012
        • Kyriakopoulos G.
        • Poultsides L.
        • Christofilopoulos P.
        Total hip arthroplasty through an anterior approach: The pros and cons.
        EFORT Open Rev. 2018; 3https://doi.org/10.1302/2058-5241.3.180023
        • James C.R.
        • Peterson B.E.
        • Crim J.R.
        • Cook J.L.
        • Crist B.D.
        The Use of Fluoroscopy During Direct Anterior Hip Arthroplasty: Powerful or Misleading?.
        J Arthroplasty. 2018; 33https://doi.org/10.1016/j.arth.2018.01.040
        • Carlson V.R.
        • Elliott I.S.
        • DeKeyser G.J.
        • Pelt C.E.
        • Anderson L.A.
        • Gililland J.M.
        Are We Being Fooled by Fluoroscopy? Distortion May Affect Limb-Length Measurements in Direct Anterior Total Hip Arthroplasty.
        J Arthroplasty. 2020; https://doi.org/10.1016/j.arth.2020.11.021
        • Thorne T.J.
        • Nishioka S.T.
        • Andrews S.N.
        • Mathews K.A.
        • Nakasone C.K.
        Comparison of Component Placement Accuracy Using Two Intraoperative Fluoroscopic Grid Technologies During Direct Anterior Total Hip Arthroplasty.
        J Arthroplasty. 2020; 35https://doi.org/10.1016/j.arth.2020.06.053