Advertisement
Systematic Review and Meta-Analysis| Volume 37, ISSUE 8, P1650-1657, August 2022

The Use of Rifampin in Total Joint Arthroplasty: A Systematic Review and Meta-Analysis of Comparative Studies

Published:March 25, 2022DOI:https://doi.org/10.1016/j.arth.2022.03.072

      Abstract

      Background

      Periprosthetic joint infection (PJI) is a devastating complication of total joint arthroplasty (TJA). Rifampin is an antibiotic with the ability to penetrate bacterial biofilms, and thus has been considered as a potentially important adjunct in the prevention and treatment of PJI. The aim of this systematic review is to evaluate and summarize the use of rifampin in TJA, particularly in the context of PJI.

      Methods

      A literature search of all relevant electronic databases was performed. All comparative studies assessing the use of rifampin in the context of TJA were included. Descriptive data are reported, and a meta-analysis was performed using all studies which compared the addition of rifampin to standard care in treating PJI.

      Results

      A total of 33 studies met inclusion criteria. A meta-analysis of 22 studies comparing the addition of rifampin to standard care for treating PJI found a significant reduction in failure rates (26.0% vs 35.9%; odds ratio 0.61, 95% confidence interval 0.43-0.86). The protective effect of rifampin was maintained in studies which included exchange arthroplasty as a treatment strategy, but not in studies only using an implant retention strategy. Among studies reporting adverse events of rifampin, there was a 20.5% adverse event rate.

      Conclusion

      Overall, rifampin appears to confer a protective effect against treatment failure following PJI. This treatment effect is particularly pronounced in the context of exchange arthroplasty. Further high-level evidence is needed to clarify the exact indications and doses of rifampin which can most effectively act as an adjunct in the treatment of PJI.

      Level of evidence

      Level III, Systematic Review and Meta-Analysis of Level I-III Studies.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Arthroplasty
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kurtz S.M.
        • Lau E.
        • Schmier J.
        • Ong K.L.
        • Zhao K.
        • Parvizi J.
        Infection burden for hip and knee arthroplasty in the United States.
        J Arthroplasty. 2008; 23: 984-991https://doi.org/10.1016/j.arth.2007.10.017
        • Kurtz S.
        • Ong K.
        • Lau E.
        • Mowat F.
        • Halpern M.
        Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030.
        J Bone Joint Surg Am. 2007; 89: 780-785https://doi.org/10.2106/JBJS.F.00222
        • Ekhtiari S.
        • Sefton A.K.
        • Wood T.J.
        • Petruccelli D.T.
        • Winemaker M.J.
        • de Beer J.D.
        The changing characteristics of arthroplasty patients: a retrospective cohort study.
        J Arthroplasty. 2021; 36: 2418-2423https://doi.org/10.1016/j.arth.2021.02.051
        • Rennert-May E.D.
        • Conly J.
        • Smith S.
        • Puloski S.
        • Henderson E.
        • Au F.
        • et al.
        The cost of managing complex surgical site infections following primary hip and knee arthroplasty: a population-based cohort study in Alberta, Canada.
        Infect Control Hosp Epidemiol. 2018; 39: 1183-1188https://doi.org/10.1017/ice.2018.199
        • Premkumar A.
        • Kolin D.A.
        • Farley K.X.
        • Wilson J.M.
        • McLawhorn A.S.
        • Cross M.B.
        • et al.
        Projected economic burden of periprosthetic joint infection of the hip and knee in the United States.
        J Arthroplasty. 2021; 36: 1484-1489https://doi.org/10.1016/j.arth.2020.12.005
        • Tande A.J.
        • Patel R.
        Prosthetic joint infection.
        Clin Microbiol Rev. 2014; 27: 302-345https://doi.org/10.1128/CMR.00111-13
        • Osmon D.R.
        • Berbari E.F.
        • Berendt A.R.
        • Lew D.
        • Zimmerli W.
        • Steckelberg J.M.
        • et al.
        Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the infectious diseases Society of America.
        Clin Infect Dis. 2013; 56: e1-e25https://doi.org/10.1093/cid/cis803
        • Bejon P.
        • Berendt A.
        • Atkins B.L.
        • Green N.
        • Parry H.
        • Masters S.
        • et al.
        Two-stage revision for prosthetic joint infection: predictors of outcome and the role of reimplantation microbiology.
        J Antimicrob Chemother. 2010; 65: 569-575https://doi.org/10.1093/jac/dkp469
        • Sherrell J.C.
        • Fehring T.K.
        • Odum S.
        • Hansen E.
        • Zmistowski B.
        • Dennos A.
        • et al.
        The chitranjan ranawat award: fate of two-stage reimplantation after failed irrigation and débridement for periprosthetic knee infection.
        Clin Orthop Relat Res. 2011; 469: 18-25https://doi.org/10.1007/s11999-010-1434-1
        • Hoell S.
        • Sieweke A.
        • Gosheger G.
        • Hardes J.
        • Dieckmann R.
        • Ahrens H.
        • et al.
        Eradication rates, risk factors, and implant selection in two-stage revision knee arthroplasty: a mid-term follow-up study.
        J Orthop Surg Res. 2016; 11: 93https://doi.org/10.1186/s13018-016-0428-4
        • Malekzadeh D.
        • Osmon D.R.
        • Lahr B.D.
        • Hanssen A.D.
        • Berbari E.F.
        Prior use of antimicrobial therapy is a risk factor for culture-negative prosthetic joint infection.
        Clin Orthop Relat Res. 2010; 468: 2039-2045https://doi.org/10.1007/s11999-010-1338-0
        • Kandel C.E.
        • Jenkinson R.
        • Daneman N.
        • Backstein D.
        • Hansen B.E.
        • Muller M.P.
        • et al.
        Predictors of treatment failure for hip and knee prosthetic joint infections in the setting of 1-and 2-stage exchange arthroplasty: a multicenter retrospective cohort.
        Open Forum Infect Dis. 2019; 6: 452https://doi.org/10.1093/ofid/ofz452
        • Archer N.K.
        • Mazaitis M.J.
        • William Costerton J.
        • Leid J.G.
        • Powers M.E.
        • Shirtliff M.E.
        Staphylococcus aureus biofilms: properties, regulation and roles in human disease.
        Virulence. 2011; 2: 445-459https://doi.org/10.4161/viru.2.5.17724
        • Senneville E.
        • Joulie D.
        • Legout L.
        • Valette M.
        • Dezèque H.
        • Beltrand E.
        • et al.
        Outcome and predictors of treatment failure in total hip/knee prosthetic joint infections due to Staphylococcus aureus.
        Clin Infect Dis. 2011; 53: 334-340https://doi.org/10.1093/cid/cir402
        • Forrest G.N.
        • Tamura K.
        Rifampin combination therapy for nonmycobacterial infections.
        Clin Microbiol Rev. 2010; 23: 14-34https://doi.org/10.1128/CMR.00034-09
        • Li C.
        • Shang X.F.
        • Cao X.F.
        • Gan Z.Y.
        • Dou Z.Y.
        Rifampicin combined with levofloxacin for preventing infection after total hip arthroplasty.
        Chin J Tissue Eng Res. 2014; 48: 7714-7718https://doi.org/10.3969/j.issn.2095-4344.2014.48.002
        • Zimmerli W.
        • Widmer A.F.
        • Blatter M.
        • Frei R.
        • Ochsner P.E.
        Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial.
        J Am Med Assoc. 1998; 279: 1537-1541https://doi.org/10.1001/jama.279.19.1537
        • Higgins J.
        • Thomas J.
        • Chandler J.
        • Cumpston M.
        • Li T.
        • Page M.
        • et al.
        Cochrane handbook for systematic reviews of interventions version 6.0.
        Wiley, England2019
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        • Altman D.
        • Antes G.
        • et al.
        Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
        PLoS Med. 2009; 6
        • Sterne J.A.C.
        • Savović J.
        • Page M.J.
        • Elbers R.G.
        • Blencowe N.S.
        • Boutron I.
        • et al.
        RoB 2: a revised tool for assessing risk of bias in randomised trials.
        BMJ. 2019; 366: I4898https://doi.org/10.1136/bmj.l4898
        • Slim K.
        • Nini E.
        • Forestier D.
        • Kwiatkowski F.
        • Panis Y.
        • Chipponi J.
        Methodological index for non-randomized studies (MINORS): development and validation of a new instrument.
        ANZ J Surg. 2003; 73: 712-716
        • The Nordic Cochrane Centre
        Review manager (RevMan).
        Cochrane Collaboration, Denmark2014
        • Akgün D.
        • Trampuz A.
        • Perka C.
        • Renz N.
        High failure rates in treatment of streptococcal periprosthetic joint infection: results from a seven-year retrospective cohort study.
        Bone Joint J. 2017; 99-B: 653-659https://doi.org/10.1302/0301-620X.99B5.BJJ-2016-0851.R1
        • Holmberg A.
        • Thórhallsdóttir V.G.
        • Robertsson O.
        • W-Dahl A.
        • Stefánsdóttir A.
        75% success rate after open debridement, exchange of tibial insert, and antibiotics in knee prosthetic joint infections.
        Acta Orthop. 2015; 86: 457-462https://doi.org/10.3109/17453674.2015.1026756
        • Jacobs A.M.E.
        • Van Hooff M.L.
        • Meis J.F.
        • Vos F.
        • Goosen J.H.M.
        Treatment of prosthetic joint infections due to Propionibacterium. Similar results in 60 patients treated with and without rifampicin.
        Acta Orthop. 2016; 87: 60-66https://doi.org/10.3109/17453674.2015.1094613
        • Kusejko K.
        • Auñón Á.
        • Jost B.
        • Natividad B.
        • Strahm C.
        • Thurnheer C.
        • et al.
        The impact of surgical strategy and rifampin on treatment outcome in Cutibacterium periprosthetic joint infections.
        Clin Infect Dis. 2021; 72: e1064-e1073https://doi.org/10.1093/cid/ciaa1839
        • Lesens O.
        • Ferry T.
        • Forestier E.
        • Botelho-Nevers E.
        • Pavese P.
        • Piet E.
        • et al.
        Should we expand the indications for the DAIR (debridement, antibiotic therapy, and implant retention) procedure for Staphylococcus aureus prosthetic joint infections? A multicenter retrospective study.
        Eur J Clin Microbiol Infect Dis. 2018; 37: 1949-1956https://doi.org/10.1007/s10096-018-3330-7
        • Lora-Tamayo J.
        • Murillo O.
        • Iribarren J.A.
        • Soriano A.
        • Sánchez-Somolinos M.
        • Baraia-Etxaburu J.M.
        • et al.
        A large multicenter study of methicillin-susceptible and methicillin-resistant Staphylococcus aureus prosthetic joint infections managed with implant retention.
        Clin Infect Dis. 2013; 56: 182-194https://doi.org/10.1093/cid/cis746
        • Lora-Tamayo J.
        • Senneville É.
        • Ribera A.
        • Bernard L.
        • Dupon M.
        • Zeller V.
        • et al.
        The not-so-good prognosis of streptococcal periprosthetic joint infection managed by implant retention: the results of a large multicenter study.
        Clin Infect Dis. 2017; 64: 1742-1752https://doi.org/10.1093/cid/cix227
        • Mahieu R.
        • Dubée V.
        • Seegers V.
        • Lemarié C.
        • Ansart S.
        • Bernard L.
        • et al.
        The prognosis of streptococcal prosthetic bone and joint infections depends on surgical management—a multicenter retrospective study.
        Int J Infect Dis. 2019; 85: 175-181https://doi.org/10.1016/j.ijid.2019.06.012
        • Metzger B.S.
        • Adams J.S.
        • Bernett J.R.
        • Mandel R.M.
        • Prokesch R.C.
        • Lo C.T.
        • et al.
        313. Outpatient treatment and recurrence of prosthetic joint infection (PJI) in infectious disease (ID) physician office infusion centers (POICs): a 2-year retrospective multicenter analysis.
        Open Forum Infect Dis. 2018; 5: S126-S127https://doi.org/10.1093/ofid/ofy210.324
        • Miller A.
        • Henry M.
        • Williams D.
        • Nodzo S.
        • Finerty E.
        • Nocon A.
        • et al.
        Two-year outcomes of infected total hip arthroplasty treated with debridement and implant retention.
        Open Forum Infect Dis. 2016; 3https://doi.org/10.1093/ofid/ofw172.843
        • Morata L.
        • Senneville E.
        • Bernard L.
        • Nguyen S.
        • Buzelé R.
        • Druon J.
        • et al.
        A retrospective review of the clinical experience of linezolid with or without rifampicin in prosthetic joint infections treated with debridement and implant retention.
        Infect Dis Ther. 2014; 3: 235-243https://doi.org/10.1007/s40121-014-0032-z
        • Andronic O.
        • Achermann Y.
        • Jentzsch T.
        • Bearth F.
        • Schweizer A.
        • Wieser K.
        • et al.
        Factors affecting outcome in the treatment of streptococcal periprosthetic joint infections: results from a single-centre retrospective cohort study.
        Int Orthop. 2021; 45: 57-63https://doi.org/10.1007/s00264-020-04722-7
        • Nguyen S.
        • Pasquet A.
        • Legout L.
        • Beltrand E.
        • Dubreuil L.
        • Migaud H.
        • et al.
        Efficacy and tolerance of rifampicin-linezolid compared with rifampicin-cotrimoxazole combinations in prolonged oral therapy for bone and joint infections.
        Clin Microbiol Infect. 2009; 15: 1163-1169https://doi.org/10.1111/j.1469-0691.2009.02761.x
        • Puhto A.P.
        • Puhto T.
        • Niinimäki T.
        • Ohtonen P.
        • Leppilahti J.
        • Syrjälä H.
        Predictors of treatment outcome in prosthetic joint infections treated with prosthesis retention.
        Int Orthop. 2015; 39: 1785-1791https://doi.org/10.1007/s00264-015-2819-2
        • Tonnelier M.
        • Bouras A.
        • Joseph C.
        • Samad Y.E.
        • Brunschweiler B.
        • Schmit J.L.
        • et al.
        Impact of rifampicin dose in bone and joint prosthetic device infections due to Staphylococcus spp: a retrospective single-center study in France.
        BMC Infect Dis. 2021; 21: 174https://doi.org/10.1186/s12879-021-05832-2
        • Tornero E.
        • Morata L.
        • Martínez-Pastor J.C.
        • Angulo S.
        • Combalia A.
        • Bori G.
        • et al.
        Importance of selection and duration of antibiotic regimen in prosthetic joint infections treated with debridement and implant retention.
        J Antimicrob Chemother. 2016; 71: 1395-1401https://doi.org/10.1093/jac/dkv481
        • Wouthuyzen-Bakker M.
        • Tornero E.
        • Morata L.
        • Nannan Panday P.V.
        • Jutte P.C.
        • Bori G.
        • et al.
        Moxifloxacin plus rifampin as an alternative for levofloxacin plus rifampin in the treatment of a prosthetic joint infection with Staphylococcus aureus.
        Int J Antimicrob Agents. 2018; 51: 38-42https://doi.org/10.1016/j.ijantimicag.2017.04.011
        • Wouthuyzen-Bakker M.
        • Sebillotte M.
        • Lomas J.
        • Taylor A.
        • Palomares E.B.
        • Murillo O.
        • et al.
        Clinical outcome and risk factors for failure in late acute prosthetic joint infections treated with debridement and implant retention.
        J Infect. 2019; 78: 40-47https://doi.org/10.1016/j.jinf.2018.07.014
        • Ascione T.
        • Pagliano P.
        • Balato G.
        • Mariconda M.
        • Rotondo R.
        • Esposito S.
        Oral therapy, microbiological findings, and comorbidity influence the outcome of prosthetic joint infections undergoing 2-stage exchange.
        J Arthroplasty. 2017; 32: 2239-2243https://doi.org/10.1016/j.arth.2017.02.057
        • Becker A.
        • Kreitmann L.
        • Triffaut-Fillit C.
        • Valour F.
        • Mabrut E.
        • Forestier E.
        • et al.
        Duration of rifampin therapy is a key determinant of improved outcomes in early-onset acute prosthetic joint infection due to Staphylococcus treated with a debridement, antibiotics and implant retention (DAIR): a retrospective multicenter study in France.
        J Bone Joint Infect. 2020; 5: 28-34https://doi.org/10.7150/jbji.40333
        • Beldman M.
        • Löwik C.
        • Soriano A.
        • Albiach L.
        • Zijlstra W.P.
        • Knobben B.A.S.
        • et al.
        If, when, and how to use rifampin in acute staphylococcal periprosthetic joint infections, a multicentre observational study.
        Clin Infect Dis. 2021; 73: 1634-1641https://doi.org/10.1093/cid/ciab426
        • Bouaziz A.
        • Uçkay I.
        • Lustig S.
        • Boibieux A.
        • Lew D.
        • Hoffmeyer P.
        • et al.
        Non-compliance with IDSA guidelines for patients presenting with methicillin-susceptible Staphylococcus aureus prosthetic joint infection is a risk factor for treatment failure.
        Med Mal Infect. 2018; 48: 207-211https://doi.org/10.1016/j.medmal.2017.09.016
        • Chaussade H.
        • Uçkay I.
        • Vuagnat A.
        • Druon J.
        • Gras G.
        • Rosset P.
        • et al.
        Antibiotic therapy duration for prosthetic joint infections treated by debridement and implant retention (DAIR): similar long-term remission for 6 weeks as compared to 12 weeks.
        Int J Infect Dis. 2017; 63: 37-42https://doi.org/10.1016/j.ijid.2017.08.002
        • El Helou O.C.
        • Berbari E.F.
        • Lahr B.D.
        • Eckel-Passow J.E.
        • Razonable R.R.
        • Sia I.G.
        • et al.
        Efficacy and safety of rifampin containing regimen for staphylococcal prosthetic joint infections treated with debridement and retention.
        Eur J Clin Microbiol Infect Dis. 2010; 29: 961-967https://doi.org/10.1007/s10096-010-0952-9
        • Gómez-Junyent J.
        • Lora-Tamayo J.
        • Baraia-Etxaburu J.
        • Sánchez-Somolinos M.
        • Iribarren J.A.
        • Rodriguez-Pardo D.
        • et al.
        Implant removal in the management of prosthetic joint infection by Staphylococcus aureus: outcome and predictors of failure in a large retrospective multicenter study.
        Antibiotics. 2021; 10: 118https://doi.org/10.3390/antibiotics10020118
        • Pushkin R.
        • Iglesias-Ussel M.D.
        • Keedy K.
        • MacLauchlin C.
        • Mould D.R.
        • Berkowitz R.
        • et al.
        A randomized study evaluating oral fusidic acid (CEM-102) in combination with oral rifampin compared with standard-of-care antibiotics for treatment of prosthetic joint infections: a newly identified drug-drug interaction.
        Clin Infect Dis. 2016; 63: 1599-1604https://doi.org/10.1093/cid/ciw665
        • Karlsen Ø.E.
        • Borgen P.
        • Bragnes B.
        • Figved W.
        • Grøgaard B.
        • Rydinge J.
        • et al.
        Rifampin combination therapy in staphylococcal prosthetic joint infections: a randomized controlled trial.
        J Orthop Surg Res. 2020; 15: 365https://doi.org/10.1186/s13018-020-01877-2
        • Lora-Tamayo J.
        • Euba G.
        • Cobo J.
        • Horcajada J.P.
        • Soriano A.
        • Sandoval E.
        • et al.
        Short- versus long-duration levofloxacin plus rifampicin for acute staphylococcal prosthetic joint infection managed with implant retention: a randomised clinical trial.
        Int J Antimicrob Agents. 2016; 48: 310-316https://doi.org/10.1016/j.ijantimicag.2016.05.021
        • Ascione T.
        • Pagliano P.
        • Mariconda M.
        • Rotondo R.
        • Balato G.
        • Toro A.
        • et al.
        Factors related to outcome of early and delayed prosthetic joint infections.
        J Infect. 2015; 70: 30-36https://doi.org/10.1016/j.jinf.2014.07.008
        • Muñoz-Gallego I.
        • Viedma E.
        • Esteban J.
        • Mancheño-Losa M.
        • García-Cañete J.
        • Blanco-García A.
        • et al.
        Genotypic and phenotypic characteristics of Staphylococcus aureus prosthetic joint infections: insight on the pathogenesis and prognosis of a multicenter prospective cohort.
        Open Forum Infect Dis. 2020; 7https://doi.org/10.1093/ofid/ofaa344
        • Perlroth J.
        • Kuo M.
        • Tan J.
        • Bayer A.S.
        • Miller L.G.
        Adjunctive use of rifampin for the treatment of Staphylococcus aureus infections.
        Arch Intern Med. 2008; 168: 805-819https://doi.org/10.1001/archinte.168.8.805
        • Vyas H.K.N.
        • Proctor E.-J.
        • McArthur J.
        • Gorman J.
        • Sanderson-Smith M.
        Current understanding of group A streptococcal biofilms.
        Curr Drug Targets. 2019; 20: 982-993https://doi.org/10.2174/1389450120666190405095712
        • Kuehnast T.
        • Cakar F.
        • Weinhäupl T.
        • Pilz A.
        • Selak S.
        • Schmidt M.A.
        • et al.
        Comparative analyses of biofilm formation among different Cutibacterium acnes isolates.
        Int J Med Microbiol. 2018; 308: 1027-1035https://doi.org/10.1016/j.ijmm.2018.09.005
        • Tan T.L.
        • Goswami K.
        • Fillingham Y.A.
        • Shohat N.
        • Rondon A.J.
        • Parvizi J.
        Defining treatment success after 2-stage exchange arthroplasty for periprosthetic joint infection.
        J Arthroplasty. 2018; 33: 3541-3546https://doi.org/10.1016/j.arth.2018.06.015