Advertisement

Measurement Techniques for Leg Length Discrepancy in Total Hip Arthroplasty: A Systematic Review of Reliability and Validity

      Abstract

      Background

      Total hip arthroplasty (THA) carries a substantial litigative burden. THA may introduce leg length discrepancy (LLD), necessitating a valid and reliable technique for LLD measurement. This study investigates the reliability and validity of techniques quantitively measuring LLD in both pre- and post-THA.

      Methods

      Embase and MEDLINE databases were searched following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for articles assessing either the validity or reliability of LLD measurement techniques. Data was pooled using random effects meta-analysis to derive reliability estimates. Study quality was assessed using the Brink and Louw checklist.

      Results

      Forty-two articles with 2059 participants were included. Thirty-three investigated reliability and 25 validity. Reliability displayed high heterogeneity. Poor to excellent intra-rater reliability was reported for antero-posterior pelvis radiographs, moderate to excellent for computed tomography scanograms, and good to excellent for clinical methods and teleradiography, and excellent for bi-planar radiography (BPR). Poor to excellent inter-rater reliability was reported for antero-posterior pelvis radiographs and clinical methods, moderate to excellent for teleradiography, good to excellent for computed tomography scanogram and excellent for BPR. The tape measure method is a valid clinical measure of LLD whilst markerless motion analysis and the block method are not. Imaging techniques are appropriately cross-validated with the exception of BPR.

      Conclusion

      The reported intra- and inter-rater reliability for most measurement techniques vary widely. The tape measure method is a valid clinical measurement of LLD. Imaging techniques have been appropriately cross-validated, with the exception of BPR, although they lack validation against a common reference technique.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Arthroplasty
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jenkins P.J.
        • Clement N.D.
        • Hamilton D.F.
        • Gaston P.
        • Patton J.T.
        • Howie C.R.
        Predicting the cost-effectiveness of total hip and knee replacement: a health economic analysis.
        Bone Joint J. 2013; 95-B: 115-121https://doi.org/10.1302/0301-620X.95B1.29835
        • Desai A.S.
        • Dramis A.
        • Board T.N.
        Leg length discrepancy after total hip arthroplasty: a review of literature.
        Curr Rev Musculoskelet Med. 2013; 6: 336-341https://doi.org/10.1007/s12178-013-9180-0
        • Flecher X.
        • Ollivier M.
        • Argenson J.N.
        Lower limb length and offset in total hip arthroplasty.
        Orthop Traumatol Surg Res. 2016; 102: S9-S20https://doi.org/10.1016/j.otsr.2015.11.001
        • Konyves A.
        • Bannister G.C.
        The importance of leg length discrepancy after total hip arthroplasty.
        J Bone Joint Surg Br. 2005; 87: 155-157https://doi.org/10.1302/0301-620X.87B2.14878
        • Edeen J.
        • Sharkey P.F.
        • Alexander A.H.
        Clinical significance of leg-length inequality after total hip arthroplasty.
        Am J Orthop (Belle Mead NJ). 1995; 24: 347-351
        • Parvizi J.
        • Sharkey P.F.
        • Bissett G.A.
        • Rothman R.H.
        • Hozack W.J.
        Surgical treatment of limb-length discrepancy following total hip arthroplasty.
        J Bone Joint Surg Am. 2003; 85: 2310-2317
        • Waibel F.W.A.
        • Berndt K.
        • Jentzsch T.
        • Farei-Campagna J.
        • Rahm S.
        • Dora C.
        • et al.
        Symptomatic leg length discrepancy after total hip arthroplasty is associated with new onset of lower back pain.
        Orthop Traumatol Surg Res. 2021; 107: 102761https://doi.org/10.1016/j.otsr.2020.102761
        • Morscher E.
        • Figner G.
        Measurement of leg length.
        in: Program Orthopedic Surgeons. 1. Springer - Verlag, Berlin1977: 21-27
        • Hoyle D.A.
        • Latour M.
        • Bohannon R.W.
        Intraexaminer, interexaminer, and interdevice comparability of leg length measurements obtained with measuring tape and metrecom.
        J Orthop Sports Phys Ther. 1991; 14: 263-268https://doi.org/10.2519/jospt.1991.14.6.263
        • Colyer S.L.
        • Evans M.
        • Cosker D.P.
        • Salo A.I.T.
        A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system.
        Sports Med Open. 2018; 4: 24
        • Guggenberger R.
        • Pfirrmann C.W.A.
        • Koch P.P.
        • Buck F.M.
        Assessment of lower limb length and alignment by biplanar linear radiography: comparison with supine CT and upright full-length radiography.
        AJR Am J Roentgenol. 2014; 202: W161-W167https://doi.org/10.2214/AJR.13.10782
        • Garner M.R.
        • Dow M.
        • Mintz D.N.
        • Widmann R.F.
        • Dodwell E.R.
        • Bixby E.
        Evaluating length: the use of low-dose biplanar radiography (EOS) and tantalum bead implantation.
        J Pediatr Orthop. 2016; 36: e6-e9https://doi.org/10.1097/BPO.0000000000000425
        • Samuel L.T.
        • Sultan A.A.
        • Rabin J.M.
        • Surace P.A.
        • Yao B.
        • Moskal J.T.
        • et al.
        Medical malpractice litigation following primary total joint arthroplasty: a comprehensive, nationwide analysis of the past decade.
        J Arthroplasty. 2019; 34: S102-S107https://doi.org/10.1016/j.arth.2019.02.066
        • McWilliams A.B.
        • Douglas S.L.
        • Redmond A.C.
        • Grainger A.J.
        • O’Connor P.J.
        • Stewart T.D.
        • et al.
        Litigation after hip and knee replacement in the national health service.
        Bone Joint J. 2013; 95-B: 122-126https://doi.org/10.1302/0301-620X.95B1.30908
        • Liberati A.
        • Altman D.G.
        • Tetzlaff J.
        • Mulrow C.
        • Gøtzsche P.C.
        • Ioannidis J.P.A.
        • et al.
        The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration.
        PLoS Med. 2009; 6: e1000100https://doi.org/10.1371/journal.pmed.1000100
        • Jonson S.R.
        • Gross M.T.
        Intraexaminer reliability, interexaminer reliability, and mean values for nine lower extremity skeletal measures in healthy naval midshipmen.
        J Orthop Sports Phys Ther. 1997; 25: 253-263https://doi.org/10.2519/jospt.1997.25.4.253
      1. Hintze JL. Chapter 207. NCSS User’s Guide II, Kaysville, Utah: NCSS Statistical System; n.d., p. 1–7.

        • Leard J.S.
        • Crane B.A.
        • Ball K.A.
        Intrarater and interrater reliability of 22 clinical measures associated with lower quarter malalignment.
        J Manipulative Physiol Ther. 2009; 32: 270-276https://doi.org/10.1016/j.jmpt.2009.03.009
      2. MATLAB. Version 9.10.0 (R2021a). The MathWorks Inc, Natick, Massachusetts2021
        • Koo T.K.
        • Li M.Y.
        A guideline of selecting and reporting intraclass correlation coefficients for reliability research.
        J Chiropr Med. 2016; 15: 155-163https://doi.org/10.1016/j.jcm.2016.02.012
        • Nichols P.J.
        • Bailey N.T.
        The accuracy of measuring leg-length differences: an observer error experiment.
        Br Med J. 1955; 2: 1247-1248
        • Liljequist D.
        • Elfving B.
        • Roaldsen K.S.
        Intraclass correlation – A discussion and demonstration of basic features.
        PLoS One. 2019; 14: e0219854https://doi.org/10.1371/journal.pone.0219854
        • Middleton-Duff T.
        • George K.
        • Batterham A.
        The reliability and validity of the “Tape” and “Block” methods for assessing anatomical leg-length discrepancy.
        Phys Ther Sport. 2000; 1: 91-99https://doi.org/10.1054/ptsp.2000.0029
        • Weir J.P.
        Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM.
        J Strength Cond Res. 2005; 19: 231-240
        • Mokkink L.B.
        • Boers M.
        • van der Vleuten C.P.M.
        • Bouter L.M.
        • Alonso J.
        • Patrick D.L.
        • et al.
        COSMIN Risk of Bias tool to assess the quality of studies on reliability or measurement error of outcome measurement instruments: a Delphi study.
        BMC Med Res Methodol. 2020; 20: 1-18https://doi.org/10.1186/s12874-020-01179-5
        • Streiner D.L.
        • Norman G.R.
        • Cairney J.
        Chapter 8. Health measurement scales: a practical guide to their development and use.
        Oxford University Press, USA2015
        • Team R.C.
        R: a language and environment for statistical computing.
        R Foundation for Statistical Computing, Vienna, Austria2020
        • Brink Y.
        • Louw Q.A.
        Clinical instruments: reliability and validity critical appraisal.
        J Eval Clin Pract. 2012; 18: 1126-1132https://doi.org/10.1111/j.1365-2753.2011.01707.x
        • Whiting P.F.
        • Rutjes A.W.S.
        • Westwood M.E.
        • Mallett S.
        • Deeks J.J.
        • Reitsma J.B.
        • et al.
        QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies.
        Ann Intern Med. 2011; 155: 529-536https://doi.org/10.7326/0003-4819-155-8-201110180-00009
        • Reina-Bueno M.
        • Lafuente-Sotillos G.
        • Castillo-Lopez J.M.
        • Gomez-Aguilar E.
        • Munuera-Martinez P.V.
        Radiographic assessment of lower-limb discrepancy.
        J Am Podiatr Med Assoc. 2017; 107: 393-398https://doi.org/10.7547/15-204
        • Tipton S.C.
        • Sutherland J.K.
        • Schwarzkopf R.
        The assessment of limb length discrepancy before total hip arthroplasty.
        J Arthroplasty. 2016; 31: 888-892https://doi.org/10.1016/j.arth.2015.10.026
        • Chang F.
        • Wang C.
        • Wang J.
        • Zhang Y.
        • Yang M.
        Pelvic reference selection in patients with unilateral Crowe type IV DDH for measuring leg length inequality.
        Hip Int. 2015; 25: 457-460https://doi.org/10.5301/hipint.5000235
        • Mahmood S.S.
        • Mukka S.S.
        • Al-Amiry B.
        • Baea S.
        • Sayed-Noor A.S.
        Validity, reliability and reproducibility of plain radiographic measurements after total hip arthroplasty.
        Skeletal Radiol. 2014; 44: 345-351https://doi.org/10.1007/s00256-014-2055-7
        • Badii M.
        • Wade A.N.
        • Collins D.R.
        • Nicolaou S.
        • Kobza B.J.
        • Kopec J.A.
        Comparison of lifts versus tape measure in determining leg length discrepancy.
        J Rheumatol. 2014; 41: 1689-1694https://doi.org/10.3899/jrheum.131089
        • Neelly K.
        • Wallmann H.W.
        • Backus C.J.
        Validity of measuring leg length with a tape measure compared to a computed tomography scan.
        Physiother Theory Pract. 2013; 29: 487-492
        • Heaver C.
        • St Mart J.-P.
        • Nightingale P.
        • Sinha A.
        • Davis E.T.
        Measuring limb length discrepancy using pelvic radiographs: the most reproducible method.
        Hip Int. 2013; 23: 391-394https://doi.org/10.5301/hipint.5000042
        • McWilliams A.B.
        • Grainger A.J.
        • O’Connor P.J.
        • Redmond A.C.
        • Stewart T.D.
        • Stone M.H.
        Assessing reproducibility for radiographic measurement of leg length inequality after total hip replacement.
        Hip Int. 2012; 22: 539-544https://doi.org/10.5301/HIP.2012.9751
        • Kjellberg M.
        • Al-Amiry B.
        • Englund E.
        • Sjoden G.O.
        • Sayed-Noor A.S.
        Measurement of leg length discrepancy after total hip arthroplasty. The reliability of a plain radiographic method compared to CT-scanogram.
        Skeletal Radiol. 2011; 41: 187-191https://doi.org/10.1007/s00256-011-1166-7
        • Jamaluddin S.
        • Sulaiman A.R.
        • Kamarul Imran M.
        • Juhara H.
        • Ezane M.A.
        • Nordin S.
        Reliability and accuracy of the tape measurement method with a nearest reading of 5 mm in the assessment of leg length discrepancy.
        Singapore Med J. 2011; 52: 681-684
        • Meermans G.
        • Malik A.
        • Witt J.
        • Haddad F.
        Preoperative radiographic assessment of limb-length discrepancy in total hip arthroplasty.
        Clin Orthop Relat Res. 2011; 469: 1677-1682https://doi.org/10.1007/s11999-010-1588-x
        • Patel S.R.
        • Toms A.P.
        • Rehman J.M.
        • Wimhurst J.
        A reliability study of measurement tools available on standard picture archiving and communication system workstations for the evaluation of hip radiographs following arthroplasty.
        J Bone Joint Surg Am. 2011; 93: 1712-1719https://doi.org/10.2106/JBJS.J.00709
        • Sayed-Noor A.S.
        • Hugo A.
        • Sjoden G.O.
        • Wretenberg P.
        Leg length discrepancy in total hip arthroplasty: comparison of two methods of measurement.
        Int Orthop. 2009; 33: 1189-1193https://doi.org/10.1007/s00264-008-0633-9
        • Harris I.
        • Hatfield A.
        • Walton J.
        Assessing leg length discrepancy after femoral fracture: clinical examination or computed tomography?.
        ANZ J Surg. 2005; 75: 319-321https://doi.org/10.1111/j.1445-2197.2005.03349.x
        • Hanada E.
        • Kirby R.L.
        • Swuste J.M.
        • Mitchell M.
        Measuring leg-length discrepancy by the “iliac crest palpation and book correction” method: reliability and validity.
        Arch Phys Med Rehabil. 2001; 82: 938-942https://doi.org/10.1053/apmr.2001.22622
        • Gross M.T.
        • Burns C.B.
        • Renner J.B.
        • Chapman S.W.
        • Hudson C.J.
        • Curtis H.S.
        • et al.
        Reliability and validity of rigid lift and pelvic leveling device method in assessing functional leg length inequality.
        J Orthop Sports Phys Ther. 1998; 27: 285-294https://doi.org/10.2519/jospt.1998.27.4.285
        • Beattie P.
        • Isaacson K.
        • Riddle D.L.
        • Rothstein J.M.
        Validity of derived measurements of leg-length differences obtained by use of a tape measure.
        Phys Ther. 1990; 70: 150-157https://doi.org/10.1093/ptj/70.3.150
        • Friberg O.
        • Nurminen M.
        • Korhonen K.
        • Soininen E.
        • Manttari T.
        Accuracy and precision of clinical estimation of leg length inequality and lumbar scoliosis: comparison of clinical and radiological measurements.
        Int Disabil Stud. 1988; 10: 49-53
        • Gogia P.P.
        • Braatz J.H.
        Validity and reliability of leg length measurements.
        J Orthop Sports Phys Ther. 1986; 8: 185-188https://doi.org/10.2519/jospt.1986.8.4.185
        • Woerman A.L.
        • Binder-Macleod S.A.
        Leg length discrepancy assessment: accuracy and precision in five clinical methods of evaluation.
        J Orthop Sports Phys Ther. 1984; 5: 230-239https://doi.org/10.2519/jospt.1984.5.5.230
        • Brêtas D.
        • Nogueira J.V.
        • Carneiro M.V.
        • Souza R.
        • Simão A.
        Analysis of intra-examiner reliability of the tape method measure to leg length discrepancy.
        Fit Perform J. 2009; 8: 335-341https://doi.org/10.3900/fpj.8.5.335.e
        • Clarke G.R.
        Unequal leg length: an accurate method of detection and some clinical results.
        Rheumatology. 1972; 11: 385-390https://doi.org/10.1093/rheumatology/11.8.385
        • Cleveland R.H.
        • Kushner D.C.
        • Ogden M.C.
        • Herman T.E.
        • Kermond W.
        • Correia J.A.
        Determination of leg length discrepancy. A comparison of weight-bearing and supine imaging.
        Invest Radiol. 1988; 23: 301-304https://doi.org/10.1097/00004424-198804000-00010
        • Muir J.M.
        • Foley K.A.
        • Fiaes K.
        • Wagler J.B.
        • Galaszewicz M.
        • Benson J.R.
        • et al.
        Validation of a novel software measurement tool for total hip arthroplasty.
        Cureus. 2021; 13: e15544https://doi.org/10.7759/cureus.15544
        • Gomez-Aguilar E.
        • Reina-Bueno M.
        • Lafuente-Sotillos G.
        • Munuera-Martinez P.V.
        • Castillo-Lopez J.M.
        • Montes-Salas R.
        Validity of clinical methods in the detection of leg-length discrepancies.
        Hip Int. 2021; 31: 186-190https://doi.org/10.1177/1120700020910108
        • Hurley R.J.
        • Davey M.S.
        • Newell M.
        • Devitt A.
        Assessing the accuracy of measuring leg length discrepancy and genu varum/valgum using a markerless motion analysis system.
        J Orthop. 2021; 26: 45-48https://doi.org/10.1016/j.jor.2021.07.010
        • Guenoun B.
        • Zadegan F.
        • Aim F.
        • Hannouche D.
        Reliability of a new method for lower-extremity measurements based on stereoradiographic three-dimensional reconstruction.
        Orthop Traumatol Surg Res. 2012; 98: 506-513https://doi.org/10.1016/j.otsr.2012.03.014
        • Liodakis E.
        • Kenawey M.
        • Doxastaki I.
        • Krettek C.
        • Haasper C.
        • Hankemeier S.
        Upright MRI measurement of mechanical axis and frontal plane alignment as a new technique: a comparative study with weight bearing full length radiographs.
        Skeletal Radiol. 2011; 40: 885-889https://doi.org/10.1007/s00256-010-1074-2
        • Hankemeier S.
        • Gosling T.
        • Richter M.
        • Hufner T.
        • Hochhausen C.
        Computer-assisted analysis of lower limb geometry: higher intraobserver reliability compared to conventional method.
        Comput Aided Surg. 2006; 11: 81-86https://doi.org/10.1080/10929080600628985
        • Boewer M.
        • Arndt H.
        • Mutze S.
        • Ostermann P.A.W.
        • Petersein J.
        Length and angle measurements of the lower extremity in digital composite overview images.
        Eur Radiol. 2005; 15: 158-164https://doi.org/10.1007/s00330-004-2352-y
        • Junk S.
        • Terjesen T.
        • Rossvoll I.
        • Braten M.
        Leg length inequality measured by ultrasound and clinical methods.
        Eur J Radiol. 1992; 14: 185-188https://doi.org/10.1016/0720-048X%2892%2990083-L
        • Sariali E.
        • Mueller M.
        • Klouche S.
        A higher reliability with a computed tomography scan-based three dimensional technique than with a two dimensional measurement for lower limb discrepancy in total hip arthroplasty planning.
        Int Orthop. 2021; 45: 3129-3137https://doi.org/10.1007/s00264-021-05148-5
        • Fisk J.W.
        • Baigent M.L.
        Clinical and radiological assessment of leg length.
        N Z Med J. 1975; 81: 477-480
        • Rosskopf A.
        • Pfirrmann C.
        Assessment of two-dimensional (2D) and three-dimensional (3D) lower limb measurements in adults: comparison of micro-dose and low-dose biplanar radiographs.
        Eur Radiol. 2016; 26: 3054-3062https://doi.org/10.1007/s00330-015-4166-5
        • Clave A.
        • Maurer D.G.
        • Nagra N.S.
        • Fazilleau F.
        • Lefevre C.
        • Stindel E.
        Reproducibility of length measurements of the lower limb by using EOSTM.
        Musculoskelet Surg. 2018; 102: 165-171https://doi.org/10.1007/s12306-017-0518-4
        • Aspegren D.D.
        • Cox J.M.
        • Trier K.K.
        Short leg correction: a clinical trial of radiographic vs. non-radiographic procedures.
        J Manipulative Physiol Ther. 1987; 10: 232-238
        • Farahmand B.
        • Ebrahimi Takamjani E.
        • Yazdi H.R.
        • Saeedi H.
        • Kamali M.
        • Bagherzadeh Cham M.
        A systematic review on the validity and reliability of tape measurement method in leg length discrepancy.
        Med J Islam Repub Iran. 2019; 33: 46https://doi.org/10.34171/mjiri.33.46
        • Escott B.G.
        • Ravi B.
        • Weathermon A.C.
        • Acharya J.
        • Gordon C.L.
        • Babyn P.S.
        • et al.
        EOS low-dose radiography: a reliable and accurate upright assessment of lower-limb lengths.
        J Bone Joint Surg Am. 2013; 95: e1831-e1837https://doi.org/10.2106/JBJS.L.00989
        • Rannisto S.
        • Paalanne N.
        • Rannisto P.
        • Haapanen A.
        • Oksaoja S.
        • Uitti J.
        Measurement of leg-length discrepancy using laser-based ultrasound method.
        Acta Radiol. 2011; 52: 1143-1146
        • Terjesen T.
        • Benum P.
        • Rossvoll I.
        • Svenningsen S.
        • Floystad Isern A.
        Leg-length discrepancy measured by ultrasonography.
        Acta Orthop Scand. 1991; 62: 121-124
        • Chen X.
        • Xiong J.
        • Wang P.
        • Zhu S.
        • Qi W.
        • Peng H.
        • et al.
        Robotic-assisted compared with conventional total hip arthroplasty: systematic review and meta-analysis.
        Postgrad Med J. 2018; 94: 335-341https://doi.org/10.1136/postgradmedj-2017-135352
        • Xu K.
        • Li Y.
        • Zhang H.
        • Wang C.
        • Xu Y.
        • Li Z.
        Computer navigation in total hip arthroplasty: a meta-analysis of randomized controlled trials.
        Int J Surg. 2014; 12: 528-533https://doi.org/10.1016/j.ijsu.2014.02.014