Advertisement

Cell-free Deoxyribonucleic Acid: A Potential Biomarker of Chronic Periprosthetic Knee Joint Infection

      Abstract

      Background

      The correct diagnosis of a chronic periprosthetic joint infection (PJI) is a major challenge in clinical practice, with the “gold standard” for diagnosis yet to be established. Synovial fluid analysis has been proven to be a useful tool for that purpose. Cell-free DNA (cf-DNA) levels have been shown to be increased in several conditions such as cancer, trauma, and sepsis. Therefore, this study was designed to evaluate the potential of synovial fluid cf-DNA quantification for the diagnosis of chronic periprosthetic infections following total knee arthroplasty.

      Methods

      A prospective study with patients undergoing total knee arthroplasty revision surgery for any indication was performed. PJI diagnosis was defined according to the Second International Consensus Meeting on Musculoskeletal Infection (2018) criteria. The study cohort consisted of 26 patients classified as infected and 40 as noninfected. Synovial fluid cf-DNA direct quantification by fluorescent staining was made. Sensitivity, specificity, and receiver operating characteristic curve were calculated.

      Results

      The cf-DNA levels were significantly higher in patients who had PJIs (122.5 ± 57.2 versus 4.6 ± 2.8 ng/μL, P < .0001). With a cutoff of 15 ng/μL, the area under the receiver operating characteristic, sensitivity, and specificity of cf-DNA were 0.978, 96.2%, and 100%, respectively.

      Conclusion

      The present study has shown that cf-DNA is increased in synovial fluid of patients who have chronic PJIs. It is a promising biomarker for knee PJI diagnosis and further studies are needed to confirm its utility.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Arthroplasty
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Khan M.
        • Osman K.
        • Green G.
        • Haddad F.S.
        The epidemiology of failure in total knee arthroplasty avoiding your next revision.
        Bone Joint J. 2016; 98-B: 105-112https://doi.org/10.1302/0301-620X.98B1
        • Koh C.K.
        • Zeng I.
        • Ravi S.
        • Zhu M.
        • Vince K.G.
        • Young S.W.
        Periprosthetic joint infection is the main cause of failure for modern knee arthroplasty: an analysis of 11,134 knees.
        Clin Orthopaedics Relat Res. 2017; 475: 2194-2201https://doi.org/10.1007/s11999-017-5396-4
      1. The Seventh Annual Report of the AJRR on Hip and Knee Arthroplasty. 2020
        • Parvizi J.
        • Tan T.L.
        • Goswami K.
        • Higuera C.
        • della Valle C.
        • Chen A.F.
        • et al.
        The 2018 definition of periprosthetic hip and knee infection: an evidence-based and validated criteria.
        J Arthroplasty. 2018; 33: 1309-1314.e2https://doi.org/10.1016/j.arth.2018.02.078
        • Kheir M.M.
        • Tan T.L.
        • Shohat N.
        • Foltz C.
        • Parvizi J.
        Routine diagnostic tests for periprosthetic joint infection demonstrate a high false-negative rate and are influenced by the infecting organism.
        J Bone Joint Surg Am. 2018; 100: 2057-2065https://doi.org/10.2106/JBJS.17.01429
        • Korn M.F.
        • Stein R.R.
        • Dolf A.
        • Shakeri F.
        • Buness A.
        • Hilgers C.
        • et al.
        High-dimensional analysis of immune cell composition predicts periprosthetic joint infections and dissects its pathophysiology.
        Biomedicines. 2020; 8: 358https://doi.org/10.3390/BIOMEDICINES8090358
        • Lee Y.S.
        • Koo K.H.
        • Kim H.J.
        • Tian S.
        • Kim T.Y.
        • Maltenfort M.G.
        • et al.
        Synovial fluid biomarkers for the diagnosis of periprosthetic joint infection: a systematic review and meta-analysis.
        J Bone Joint Surg Am. 2017; 99: 2077-2084https://doi.org/10.2106/JBJS.17.00123
        • Carli A.v.
        • Abdelbary H.
        • Ahmadzai N.
        • Cheng W.
        • Shea B.
        • Hutton B.
        • et al.
        Diagnostic accuracy of serum, synovial, and tissue testing for chronic periprosthetic joint infection after hip and knee replacements: a systematic review.
        J Bone Joint Surg Am. 2019; 101: 635-649https://doi.org/10.2106/JBJS.18.00632
        • Peng M.
        • Chen C.
        • Hulbert A.
        • Brock M.v.
        • Yu F.
        Non-blood circulating tumor DNA detection in cancer.
        Oncotarget. 2017; 8: 69162https://doi.org/10.18632/ONCOTARGET.19942
        • Chan A.K.
        • Chiu R.W.
        • Lo Y.D.
        Cell-free nucleic acids in plasma, serum and urine: a new tool in molecular diagnosis.
        Ann Clin Biochem. 2003; 40: 122-130
        • Jahr S.
        • Hentze H.
        • Englisch S.
        • Hardt D.
        • Fackelmayer F.O.
        • Hesch R.-D.
        • et al.
        DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells 1.
        Cancer Res. 2001; 61: 1659-1665
        • Dwivedi D.J.
        • Toltl L.J.
        • Swystun L.L.
        • Pogue J.
        • Liaw K.L.
        • Weitz J.I.
        • et al.
        Prognostic utility and characterization of cell-free DNA in patients with severe sepsis.
        Crit Care. 2012; 16: 1-11https://doi.org/10.1186/cc11466
        • Jackson Chornenki N.L.
        • Coke R.
        • Kwong A.C.
        • Dwivedi D.J.
        • Xu M.K.
        • McDonald E.
        • et al.
        Comparison of the source and prognostic utility of cfDNA in trauma and sepsis.
        Intensive Care Med Exp. 2019; 7: 29https://doi.org/10.1186/s40635-019-0251-4
        • Truszewska A.
        • Wirkowska A.
        • Gala K.
        • Truszewski P.
        • Ł Krzemień-Ojak
        • Perkowska-Ptasińska A.
        • et al.
        Cell-free DNA profiling in patients with lupus nephritis.
        Lupus. 2020; 29: 1759-1772https://doi.org/10.1177/0961203320957717
        • Aucamp J.
        • Bronkhorst A.J.
        • Badenhorst C.P.S.
        • Pretorius P.J.
        The diverse origins of circulating cell-free DNA in the human body: a critical re-evaluation of the literature.
        Biol Rev. 2018; 93: 1649-1683https://doi.org/10.1111/brv.12413
        • Logters T.
        • Paunel-go A.
        • Zilkens C.
        • Altrichter J.
        • Scholz M.
        • Thelen S.
        • et al.
        Diagnostic accuracy of neutrophil-derived circulating free DNA (cf-DNA/NETs) for septic arthritis.
        J Orthop Res. 2009; 27: 1401-1407https://doi.org/10.1002/jor.20911
        • Morawietz L.
        • Tiddens O.
        • Mueller M.
        • Tohtz S.
        • Gansukh T.
        • Schroeder J.H.
        • et al.
        Twenty-three neutrophil granulocytes in 10 high-power fields is the best histopathological threshold to differentiate between aseptic and septic endoprosthesis loosening.
        Histopathology. 2009; 54: 847-853https://doi.org/10.1111/j.1365-2559.2009.03313.x
        • Wallach D.
        • Kang T.B.
        • Kovalenko A.
        Concepts of tissue injury and cell death in inflammation: a historical perspective.
        Nat Rev Immunol. 2014; 14: 51-59https://doi.org/10.1038/nri3561
        • Colotta F.
        • Re F.
        • Polentarutti N.
        • Sozzani S.
        • Mantovani A.
        Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products.
        Blood. 1992; 80: 2012-2020
        • Zatorska B.
        • Arciola C.R.
        • Haffner N.
        • Segagni Lusignani L.
        • Presterl E.
        • Diab-Elschahawi M.
        Bacterial extracellular DNA production is associated with outcome of prosthetic joint infections.
        Biomed Res Int. 2018; 2018: 1067413https://doi.org/10.1155/2018/1067413
        • Meyle E.
        • Stroh P.
        • Günther F.
        • Hoppy-tichy T.
        • Wagner C.
        • Hänsch G.M.
        Destruction of bacterial biofilms by polymorphonuclear neutrophils: relative contribution of phagocytosis, DNA release, and degranulation.
        Int J Artif Organs. 2010; 33: 608-620
        • Pan S.W.
        • Su W.J.
        • Chan Y.J.
        • Chuang F.Y.
        • Feng J.Y.
        • Chen Y.M.
        Mycobacterium tuberculosis-derived circulating cell-free DNA in patients with pulmonary tuberculosis and persons with latent tuberculosis infection.
        PLoS One. 2021; 16: e0253879https://doi.org/10.1371/JOURNAL.PONE.0253879
        • Leticia Fernández-Carballo B.
        • Broger T.
        • Wyss R.
        • Banaei N.
        • Denkinger C.M.
        Toward the development of a circulating free DNA-based in vitro diagnostic test for infectious diseases: a review of evidence for tuberculosis.
        J Clin Microbiol. 2019; 57 (e01234–18)
        • Long Y.
        • Zhang Y.
        • Gong Y.
        • Sun R.
        • Su L.
        • Lin X.
        • et al.
        Diagnosis of sepsis with cell-free DNA by next-generation sequencing technology in ICU patients.
        Arch Med Res. 2016; 47: 365-371https://doi.org/10.1016/J.ARCMED.2016.08.004
        • Echeverria A.P.
        • Cohn I.S.
        • Danko D.C.
        • Shanaj S.
        • Blair L.
        • Hollemon D.
        • et al.
        Sequencing of circulating microbial cell-free DNA can identify pathogens in periprosthetic joint infections.
        J Bone Joint Surg Am. 2021; 103: 1705-1712https://doi.org/10.2106/JBJS.20.02229
        • Tande A.J.
        • Patel R.
        Prosthetic joint infection.
        Clin Microbiol Rev. 2014; 27: 302-345https://doi.org/10.1128/CMR.00111-13
        • Trampuz A.
        • Hanssen A.D.
        • Osmon D.R.
        • Mandrekar J.
        • Steckelberg J.M.
        • Patel R.
        Synovial fluid leukocyte count and differential for the diagnosis of prosthetic knee infection.
        Am J Med. 2004; 117: 556-562https://doi.org/10.1016/j.amjmed.2004.06.022
        • Boyle K.K.
        • Wood S.
        • Tarity T.D.
        Low-virulence organisms and periprosthetic joint infection-biofilm considerations of these organisms.
        Curr Rev Musculoskelet Med. 2018; 11: 409-419https://doi.org/10.1007/s12178-018-9503-2
        • Tan T.L.
        • Kheir M.M.
        • Shohat N.
        • Tan D.D.
        • Kheir M.
        • Chen C.
        • et al.
        Culture-negative periprosthetic joint infection.
        JBJS Open Access. 2018; 3: e0060https://doi.org/10.2106/jbjs.oa.17.00060
        • Zahar A.
        • Lausmann C.
        • Cavalheiro C.
        • Dhamangaonkar A.C.
        • Bonanzinga T.
        • Gehrke T.
        • et al.
        How reliable is the cell count analysis in the diagnosis of prosthetic joint infection?.
        J Arthroplasty. 2018; 33: 3257-3262https://doi.org/10.1016/j.arth.2018.05.018
        • Matsen Ko L.
        • Parvizi J.
        Diagnosis of periprosthetic infection: novel developments.
        Orthop Clin North Am. 2016; 47: 1-9https://doi.org/10.1016/j.ocl.2015.08.003
        • Higuera C.A.
        • Zmistowski B.
        • Malcom T.
        • Barsoum W.K.
        • Sporer S.M.
        • Mommsen P.
        • et al.
        Synovial fluid cell count for diagnosis of chronic periprosthetic hip infection.
        J Bone Joint Surg Am. 2017; 99: 753-759https://doi.org/10.2106/JBJS.16.00123
        • Eriksson H.K.
        • Nordström J.
        • Gabrysch K.
        • Hailer N.P.
        • Lazarinis S.
        Does the alpha-defensin immunoassay or the lateral flow test have better diagnostic value for periprosthetic joint infection? A meta-analysis.
        Clin Orthop Relat Res. 2018; 476: 1065-1072https://doi.org/10.1007/s11999.0000000000000244
        • Ahmad S.S.
        • Hirschmann M.T.
        • Becker R.
        • Shaker A.
        • Ateschrang A.
        • Keel M.J.B.
        • et al.
        A meta-analysis of synovial biomarkers in periprosthetic joint infection: synovasure™ is less effective than the ELISA-based alpha-defensin test.
        Knee Surg Sports Traumatol Arthrosc. 2018; 26: 3039-3047https://doi.org/10.1007/s00167-018-4904-8
        • Meddeb R.
        • Pisareva E.
        • Thierry A.R.
        Guidelines for the preanalytical conditions for analyzing circulating cell-free DNA.
        Clin Chem. 2019; 65: 623-633https://doi.org/10.1373/CLINCHEM.2018.298323
        • Marcatti M.
        • Saada J.
        • Okereke I.
        • Wade C.E.
        • Bossmann S.H.
        • Motamedi M.
        • et al.
        Quantification of circulating cell free mitochondrial dna in extracellular vesicles with picogreenTM in liquid biopsies: fast assessment of disease/trauma severity.
        Cells. 2021; 10: 819https://doi.org/10.3390/cells10040819
        • Coimbra S.
        • Rocha S.
        • Nascimento H.
        • Valente M.J.
        • Catarino C.
        • Rocha-Pereira P.
        • et al.
        Cell-free DNA as a marker for the outcome of end-stage renal disease patients on haemodialysis.
        Clin Kidney J. 2021; 14: 1371-1378https://doi.org/10.1093/ckj/sfaa115
        • Kim J.-J.
        • Park K.
        • Han Y.
        • Kim S.
        • Oh S.-B.
        • Oh S.
        • et al.
        Verification of performance of a direct fluorescent assay for cell-free DNA quantification, stability according to pre-analytical storage conditions, and the effect of freeze-thawing.
        Biomed Rep. 2021; 15: 68https://doi.org/10.3892/br.2021.1444