Advertisement

How to Create an Orthopaedic Arthroplasty Administrative Database Project: A Step-by-Step Guide Part I: Study Design

Published:October 11, 2022DOI:https://doi.org/10.1016/j.arth.2022.10.001

      Abstract

      Background

      Use of clinical and administrative databases in orthopaedic surgery research has grown substantially in recent years. It is estimated that approximately 10% of all published lower extremity arthroplasty research have been database studies. The aim of this review is to serve as a guide on how to (1) design, (2) execute, and (3) publish an orthopaedic administrative database arthroplasty project.

      Methods

      In part I, we discuss how to develop a research question and choose a database (when databases should/should not be used), detailing advantages/disadvantages of those most commonly used. To date, the most commonly published databases in orthopaedic research have been the National Inpatient Sample, Medicare, National Surgical Quality Improvement Program, and those provided by PearlDiver. General advantages of most database studies include accessibility, affordability compared to prospective research studies, ease of use, large sample sizes, and the ability to identify trends and aggregate outcomes of multiple health care systems/providers.

      Results

      Disadvantages of most databases include their retrospective observational nature, limitations of procedural/billing coding, relatively short follow-up, limited ability to control for confounding variables, and lack of functional/patient-reported outcomes.

      Conclusion

      Although this study is not all-encompassing, we hope it will serve as a starting point for those interested in conducting and critically reviewing lower extremity arthroplasty database studies.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Arthroplasty
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pugely A.J.
        • Martin C.T.
        • Harwood J.
        • Ong K.L.
        • Bozic K.J.
        • Callaghan J.J.
        Database and registry research in orthopaedic surgery.
        J Bone Jt Surg. 2015; 97: 1799-1808https://doi.org/10.2106/JBJS.O.00134
        • Pugely A.J.
        • Martin C.T.
        • Harwood J.
        • Ong K.L.
        • Bozic K.J.
        • Callaghan J.J.
        Database and registry research in orthopaedic surgery.
        J Bone Jt Surg. 2015; 97: 1278-1287https://doi.org/10.2106/JBJS.N.01260
        • Hoppe D.J.
        • Schemitsch E.H.
        • Morshed S.
        • Tornetta P.
        • Bhandari M.
        Hierarchy of evidence: where observational studies fit in and why we need them.
        J Bone Joint Surg Am. 2009; 91: 2-9https://doi.org/10.2106/JBJS.H.01571
        • Cunningham B.P.
        • Harmsen S.
        • Kweon C.
        • Patterson J.
        • Waldrop R.
        • McLaren A.
        • et al.
        Have levels of evidence improved the quality of orthopaedic research?.
        Clin Orthop Relat Res. 2013; 471: 3679-3686https://doi.org/10.1007/S11999-013-3159-4
        • Bedard N.A.
        • Pugely A.J.
        • McHugh M.A.
        • Lux N.R.
        • Bozic K.J.
        • Callaghan J.J.
        Big data and total hip arthroplasty: how do large databases compare?.
        J Arthroplasty. 2018; 33: 41-45.e3https://doi.org/10.1016/j.arth.2017.09.003
        • Bohl D.D.
        • Singh K.
        • Grauer J.N.
        Nationwide databases in orthopaedic surgery research.
        J Am Acad Orthop Surg. 2016; 24: 673-682https://doi.org/10.5435/JAAOS-D-15-00217
        • Pugely A.J.
        • Martin C.T.
        • Harwood J.
        • Ong K.L.
        • Bozic K.J.
        • Callaghan J.J.
        Database and registry research in orthopaedic surgery: Part 2: clinical registry data.
        J Bone Joint Surg Am. 2015; 97: 1799-1808https://doi.org/10.2106/JBJS.O.00134
        • Pugely A.J.
        • Martin C.T.
        • Harwood J.
        • Ong K.L.
        • Bozic K.J.
        • Callaghan J.J.
        Database and registry research in orthopaedic surgery: Part I: claims-based data.
        J Bone Joint Surg Am. 2015; 97: 1278-1287https://doi.org/10.2106/JBJS.N.01260
        • Smith H.N.
        • Bhandari M.
        • Mahomed N.N.
        • Jan M.
        • Gandhi R.
        Comparison of arthroplasty trial publications after registration in ClinicalTrials.gov.
        J Arthroplasty. 2012; 27: 1283-1288https://doi.org/10.1016/J.ARTH.2011.11.005
        • Ng M.K.
        • Vakharia R.M.
        • Bozic K.J.
        • Callaghan J.J.
        • Mont M.A.
        Clinical and administrative databases used in lower extremity arthroplasty research.
        J Arthroplasty. 2021; 36: 3608-3615https://doi.org/10.1016/J.ARTH.2021.05.034
        • Sundaram K.
        • Warren J.A.
        • Krebs O.K.
        • Anis H.K.
        • Klika A.K.
        • Molloy R.M.
        • et al.
        Estimated glomerular filtration rate is a prognosticator of adverse outcomes after primary total knee arthroplasty among patients with chronic kidney disease and glomerular hyperfiltration.
        Knee. 2021; 28: 36-44https://doi.org/10.1016/J.KNEE.2020.11.008
        • Gallaway K.E.
        • Ahn J.
        • Callan A.K.
        Thirty-day outcomes after surgery for metastatic bone disease of the extremities: an analysis of the NSQIP database.
        J Am Acad Orthop Surg. 2020; 28: e1014-e1019https://doi.org/10.5435/JAAOS-D-19-00718
        • Ng M.
        • Golub I.
        • Piuzzi N.
        • Razi A.
        • Wong C.
        • Mont M.
        Outpatient primary total hip arthroplasty is a safe alternative to inpatient primary total hip arthroplasty: a matched-cohort analysis study.
        Surg Technol Int. 2021; 39https://doi.org/10.52198/21.STI.39.OS1490
        • Sodhi N.
        • Acuna A.
        • Etcheson J.
        • Mohamed N.
        • Davila I.
        • Ehiorobo J.O.
        • et al.
        Management of osteonecrosis of the femoral head.
        Bone Joint J. 2020; 102-B: 122-128https://doi.org/10.1302/0301-620X.102B7.BJJ-2019-1611.R1
        • Weisberg M.D.
        • Ng M.K.
        • Magruder M.L.
        • Vakharia R.M.
        • Roche M.W.
        • Erez O.
        The association of cannabis use disorder and perioperative complications after primary total knee arthroplasty.
        J Am Acad Orthop Surg. 2022; 30: 313-320https://doi.org/10.5435/JAAOS-D-21-00703
        • Horn A.R.
        • Diamond K.B.
        • Ng M.K.
        • Vakharia R.M.
        • Mont M.A.
        • Erez O.
        The association of alcohol use disorder with perioperative complications following primary total hip arthroplasty.
        Hip Pelvis. 2021; 33: 231https://doi.org/10.5371/HP.2021.33.4.231
        • Benito J.
        • Stafford J.
        • Judd H.
        • Ng M.
        • Corces A.
        • Roche M.W.
        Length of stay increases 90-day readmission rates in patients undergoing primary total joint arthroplasty.
        JAAOS Glob Res Rev. 2022; 6https://doi.org/10.5435/JAAOSGLOBAL-D-21-00271
        • Golub I.J.
        • Ng M.K.
        • Conway C.A.
        • Vakharia R.M.
        • Cannada L.K.
        • Kang K.K.
        How does sleep apnea impact outcomes following primary total hip arthroplasty for femoral neck fractures: a matched-control analysis.
        Arch Orthop Trauma Surg. 2021; 1: 1-6https://doi.org/10.1007/S00402-021-04070-0/FIGURES/1
        • Madigan D.
        • Ryan P.B.
        • Schuemie M.
        • Stang P.E.
        • Overhage J.M.
        • Hartzema A.G.
        • et al.
        Evaluating the impact of database heterogeneity on observational study results.
        Am J Epidemiol. 2013; 178: 645-651https://doi.org/10.1093/aje/kwt010
      1. HCUP-US NIS Overview n.d.
        https://www.hcup-us.ahrq.gov/nisoverview.jsp
        Date accessed: February 15, 2022
        • Gwam C.U.
        • Mistry J.B.
        • Mohamed N.S.
        • Thomas M.
        • Bigart K.C.
        • Mont M.A.
        • et al.
        Current epidemiology of revision total hip arthroplasty in the United States: national inpatient sample 2009 to 2013.
        J Arthroplasty. 2017; 32: 2088-2092https://doi.org/10.1016/J.ARTH.2017.02.046
        • Mistry J.B.
        • Gwam C.U.
        • Naziri Q.
        • Pivec R.
        • Abraham R.
        • Mont M.A.
        • et al.
        Are allogeneic transfusions decreasing in total knee arthroplasty patients? National inpatient sample 2009-2013.
        J Arthroplasty. 2018; 33: 1705-1712https://doi.org/10.1016/J.ARTH.2017.12.014
        • Moon A.S.
        • Smith W.
        • Mullen S.
        • Ponce B.A.
        • McGwin G.
        • Shah A.
        • et al.
        Marijuana use and mortality following orthopedic surgical procedures.
        Subst Abus. 2018; 40: 378-382https://doi.org/10.1080/08897077.2018.1449054
        • Johnson A.J.
        • Mont M.A.
        • Tsao A.K.
        • Jones L.C.
        Treatment of femoral head osteonecrosis in the United States: 16-year analysis of the nationwide inpatient sample.
        Clin Orthop Relat Res. 2014; 472: 617-623https://doi.org/10.1007/S11999-013-3220-3/FIGURES/4
        • Naziri Q.
        • Boylan M.R.
        • Issa K.
        • Jones L.C.
        • Khanuja H.S.
        • Mont M.A.
        Does HIV infection increase the risk of perioperative complications after THA? A nationwide database study.
        Clin Orthop Relat Res. 2015; 473: 581-586https://doi.org/10.1007/S11999-014-3855-8/FIGURES/2
        • Singh J.A.
        • Yu S.
        • Chen L.
        • Cleveland J.D.
        Rates of total joint replacement in the United States: future projections to 2020–2040 using the national inpatient sample.
        J Rheumatol. 2019; 46: 1134-1140https://doi.org/10.3899/JRHEUM.170990
        • Chughtai M.
        • Gwam C.U.
        • Khlopas A.
        • Newman J.M.
        • Curtis G.L.
        • Torres P.A.
        • et al.
        The incidence of postoperative pneumonia in various surgical subspecialties: a dual database analysis.
        Surg Technol Int. 2017; 30: 45-51
        • Mohamed N.S.
        • Castrodad I.M.D.
        • Etcheson J.I.
        • Sodhi N.
        • Remily E.A.
        • Wilkie W.A.
        • et al.
        Inpatient dislocation after primary total hip arthroplasty: incidence and associated patient and hospital factors.
        Hip Int. 2020; 1120700020940968https://doi.org/10.1177/1120700020940968
        • Delanois R.E.
        • Mistry J.B.
        • Gwam C.U.
        • Mohamed N.S.
        • Choksi U.S.
        • Mont M.A.
        Current epidemiology of revision total knee arthroplasty in the United States.
        J Arthroplasty. 2017; 32: 2663-2668https://doi.org/10.1016/J.ARTH.2017.03.066
        • Ramkumar P.N.
        • Karnuta J.M.
        • Navarro S.M.
        • Haeberle H.S.
        • Iorio R.
        • Mont M.A.
        • et al.
        Preoperative prediction of value metrics and a patient-specific payment model for primary total hip arthroplasty: development and validation of a deep learning model.
        J Arthroplasty. 2019; 34: 2228-2234.e1https://doi.org/10.1016/J.ARTH.2019.04.055
        • Cima R.R.
        • Lackore K.A.
        • Nehring S.A.
        • Cassivi S.D.
        • Donohue J.H.
        • Deschamps C.
        • et al.
        How best to measure surgical quality? Comparison of the agency for healthcare research and quality patient safety indicators (AHRQ-PSI) and the American College of surgeons national surgical quality improvement program (ACS-NSQIP) postoperative adverse events at a single institution.
        Surgery. 2011; 150: 943-949https://doi.org/10.1016/J.SURG.2011.06.020
      2. Home page - Centers for medicare & Medicaid Services data n.d.
        https://data.cms.gov/
        Date accessed: February 15, 2022
        • Cram P.
        • Lu X.
        • Callaghan J.J.
        • Vaughan-Sarrazin M.S.
        • Cai X.
        • Li Y.
        Long-term trends in hip arthroplasty use and volume.
        J Arthroplasty. 2012; 27https://doi.org/10.1016/J.ARTH.2011.04.043
        • Cram P.
        • Lu X.
        • Kates S.L.
        • Singh J.A.
        • Li Y.
        • Wolf B.R.
        Total knee arthroplasty volume, utilization, and outcomes among Medicare beneficiaries, 1991-2010.
        JAMA. 2012; 308: 1227-1236https://doi.org/10.1001/2012.JAMA.11153
        • Bolognesi M.P.
        • Greiner M.A.
        • Attarian D.E.
        • Watters T.S.
        • Wellman S.S.
        • Curtis L.H.
        • et al.
        Unicompartmental knee arthroplasty and total knee arthroplasty among medicare beneficiaries, 2000 to 2009.
        J Bone Jt Surg. 2013; 95https://doi.org/10.2106/JBJS.L.00652
        • Anis H.K.
        • Sodhi N.
        • Vakharia R.M.
        • Scuderi G.R.
        • Malkani A.L.
        • Roche M.W.
        • et al.
        Cost analysis of Medicare patients with varying complexities who underwent total knee arthroplasty.
        J Knee Surg. 2021; 34: 298-302https://doi.org/10.1055/S-0039-1695716/ID/JR190153OA-19
        • Molina C.S.
        • Thakore R.V.
        • Blumer A.
        • Obremskey W.T.
        • Sethi M.K.
        Use of the national surgical quality improvement program in orthopaedic surgery.
        Clin Orthop Relat Res. 2015; 473: 1574-1581https://doi.org/10.1007/S11999-014-3597-7/TABLES/6
        • Khuri S.F.
        • Daley J.
        • Henderson W.G.
        The comparative assessment and improvement of quality of surgical care in the Department of Veterans Affairs.
        Arch Surg. 2002; 137: 20-27https://doi.org/10.1001/ARCHSURG.137.1.20
        • Henderson W.G.
        • Khuri S.F.
        • Mosca C.
        • Fink A.S.
        • Hutter M.M.
        • Neumayer L.A.
        Comparison of risk-adjusted 30-day postoperative mortality and morbidity in department of Veterans affairs hospitals and selected university medical Centers: general surgical operations in men.
        J Am Coll Surg. 2007; 204: 1103-1114https://doi.org/10.1016/j.jamcollsurg.2007.02.068
        • Garbarino L.J.
        • Gold P.A.
        • Sodhi N.
        • Anis H.K.
        • Ehiorobo J.O.
        • Boraiah S.
        • et al.
        The effect of operative time on in-hospital length of stay in revision total knee arthroplasty.
        Ann Transl Med. 2019; 7: 66https://doi.org/10.21037/ATM.2019.01.54
        • George J.
        • Mahmood B.
        • Sultan A.A.
        • Sodhi N.
        • Mont M.A.
        • Higuera C.A.
        • et al.
        How fast should a total knee arthroplasty Be performed? An analysis of 140,199 surgeries.
        J Arthroplasty. 2018; 33: 2616-2622https://doi.org/10.1016/J.ARTH.2018.03.012
        • George J.
        • Chughtai M.
        • Khlopas A.
        • Klika A.K.
        • Barsoum W.K.
        • Higuera C.A.
        • et al.
        Readmission, reoperation, and complications: total hip vs total knee arthroplasty.
        J Arthroplasty. 2018; 33: 655-660https://doi.org/10.1016/J.ARTH.2017.09.048
        • Sodhi N.
        • Dalton S.E.
        • Gold P.A.
        • Garbarino L.J.
        • Anis H.K.
        • Newman J.M.
        • et al.
        A comparison of relative value units in revision hip versus revision knee arthroplasty.
        J Orthop. 2019; 16: 45-48https://doi.org/10.1016/J.JOR.2018.12.010
        • Ng M.
        • Song S.
        • George J.
        • Khlopas A.
        • Sodhi N.
        • Ng K.
        • et al.
        Associations between seasonal variation and post-operative complications after total hip arthroplasty.
        Ann Transl Med. 2017; 5: 33https://doi.org/10.21037/ATM.2017.11.13
        • Sodhi N.
        • Piuzzi N.S.
        • Dalton S.E.
        • George J.
        • Ng M.
        • Khlopas A.
        • et al.
        What influence does the time of year have on postoperative complications following total knee arthroplasty?.
        J Arthroplasty. 2018; 33: 1908-1913https://doi.org/10.1016/J.ARTH.2017.12.020
        • George J.
        • Piuzzi N.S.
        • Ng M.
        • Sodhi N.
        • Khlopas A.A.
        • Mont M.A.
        Association between body mass index and thirty-day complications after total knee arthroplasty.
        J Arthroplasty. 2018; 33: 865-871https://doi.org/10.1016/J.ARTH.2017.09.038
        • Davis C.L.
        • Pierce J.R.
        • Henderson W.
        • Spencer C.D.
        • Tyler C.
        • Langberg R.
        • et al.
        Assessment of the reliability of data collected for the department of Veterans affairs national surgical quality improvement program.
        J Am Coll Surg. 2007; 204: 550-560https://doi.org/10.1016/J.JAMCOLLSURG.2007.01.012
        • Vakharia A.M.
        • Cohen-Levy W.B.
        • Vakharia R.M.
        • Sodhi N.
        • Mont M.A.
        • Roche M.W.
        Perioperative complications in patients with rheumatoid arthritis following primary total knee arthroplasty: an analysis of 102,898 patients.
        J Knee Surg. 2019; 32: 1075-1080https://doi.org/10.1055/S-0039-1692397/ID/JR180438OA-44
        • Roche M.
        • Law T.Y.
        • Kurowicki J.
        • Sodhi N.
        • Rosas S.
        • Elson L.
        • et al.
        Albumin, prealbumin, and transferrin may Be predictive of wound complications following total knee arthroplasty.
        J Knee Surg. 2018; 31: 946-951https://doi.org/10.1055/S-0038-1672122/ID/JR18APR0012SSA-33
        • Hernandez N.M.
        • Vakharia R.M.
        • Bolognesi M.P.
        • Mont M.A.
        • Seyler T.M.
        • Roche M.W.
        Do patients with paget’s disease have worse outcomes following primary total knee arthroplasty?.
        J Knee Surg. 2021; https://doi.org/10.1055/S-0041-1727180/ID/JR200535OA-21
        • Golub I.J.
        • Ng M.K.
        • Conway C.A.
        • Vakharia R.M.
        • Cannada L.K.
        • Kang K.K.
        How does sleep apnea impact outcomes following primary total hip arthroplasty for femoral neck fractures: a matched-control analysis.
        Arch Orthop Trauma Surg. 2021; 1: 1-6https://doi.org/10.1007/S00402-021-04070-0/FIGURES/1
        • Hadid B.
        • Buehring W.
        • Mannino A.
        • Weisberg M.D.
        • Golub I.J.
        • Ng M.K.
        • et al.
        Crohn’s disease increases in-hospital lengths of stay, medical complications, and costs of care following primary total knee arthroplasty.
        J Knee Surg. 2021; https://doi.org/10.1055/S-0041-1739199/ID/JR200606OA-41
        • Vakharia R.M.
        • Sabeh K.G.
        • Sodhi N.
        • Mont M.A.
        • Roche M.W.
        • Hernandez V.H.
        A nationwide analysis on the impact of schizophrenia following primary total knee arthroplasty: a matched-control analysis of 49,176 medicare patients.
        J Arthroplasty. 2020; 35: 417-421https://doi.org/10.1016/J.ARTH.2019.09.034
        • Vakharia R.M.
        • Sabeh K.G.
        • Sodhi N.
        • Naziri Q.
        • Mont M.A.
        • Roche M.W.
        Implant-related complications among patients with opioid use disorder following primary total hip arthroplasty: a matched-control analysis of 42,097 medicare patients.
        J Arthroplasty. 2020; 35: 178-181https://doi.org/10.1016/J.ARTH.2019.08.003
        • Roche M.
        • yee Law T.
        • Sultan A.A.
        • Umpierrez E.
        • Khlopas A.
        • Rosas S.
        • et al.
        Racial disparities in revision total knee arthroplasty: analysis of 125,901 patients in national US private payer database.
        J Racial Ethn Heal Disparities. 2019; 6: 101-109https://doi.org/10.1007/S40615-018-0504-Z/TABLES/10
        • Vakharia R.M.
        • Sodhi N.
        • Anis H.K.
        • Ehiorobo J.O.
        • Mont M.A.
        • Roche M.W.
        Patients who have cannabis use disorder have higher rates of venous thromboemboli, readmission rates, and costs following primary total knee arthroplasty.
        J Arthroplasty. 2020; 35: 997-1002https://doi.org/10.1016/J.ARTH.2019.11.035
        • Peterson J.
        • Sodhi N.
        • Khlopas A.
        • Piuzzi N.S.
        • Newman J.M.
        • Sultan A.A.
        • et al.
        A comparison of relative value units in primary versus revision total knee arthroplasty.
        J Arthroplasty. 2018; 33: S39-S42https://doi.org/10.1016/J.ARTH.2017.11.070
        • George J.
        • Newman J.M.
        • Ramanathan D.
        • Klika A.K.
        • Higuera C.A.
        • Barsoum W.K.
        Administrative databases can yield false conclusions—an example of obesity in total joint arthroplasty.
        J Arthroplasty. 2017; 32: S86-S90https://doi.org/10.1016/J.ARTH.2017.01.052
        • Bohl D.D.
        • Basques B.A.
        • Golinvaux N.S.
        • Baumgaertner M.R.
        • Grauer J.N.
        Nationwide inpatient sample and national surgical quality improvement program give different results in hip fracture studies.
        Clin Orthop Relat Res. 2014; 472: 1672-1680https://doi.org/10.1007/S11999-014-3559-0/TABLES/4
        • Davenport D.L.
        • Holsapple C.W.
        • Conigliaro J.
        Assessing surgical quality using administrative and clinical data sets: a direct comparison of the University HealthSystem Consortium Clinical Database and the National Surgical Quality Improvement Program data set.
        Am J Med Qual. 2009; 24: 395-402https://doi.org/10.1177/1062860609339936
        • Sanders T.L.
        • Pareek A.
        • Desai V.S.
        • Hewett T.E.
        • Levy B.A.
        • Stuart M.J.
        • et al.
        Low accuracy of diagnostic codes to identify anterior cruciate ligament tear in orthopaedic database research.
        Am J Sports Med. 2018; 46: 2894-2898https://doi.org/10.1177/0363546518790507
        • Varnum C.
        • Pedersen A.B.
        • Gundtoft P.H.
        • Overgaard S.
        The what, when and how of orthopaedic registers: an introduction into register-based research.
        EFORT Open Rev. 2019; 4: 337-343https://doi.org/10.1302/2058-5241.4.180097