Advertisement

How To Create an Orthopaedic Arthroplasty Database Project: A Step-by-Step Guide Part II: Study Execution

Published:October 12, 2022DOI:https://doi.org/10.1016/j.arth.2022.10.004

      Abstract

      In recent years, use of national databases in orthopaedic surgery research has grown substantially, with database studies comprising an estimated ∼10% of all published lower extremity arthroplasty research. The aim of this review is to serve as a guide on how to: 1) design; 2) execute; and 3) publish an orthopaedic database arthroplasty project. In part II, we discuss how to collect data, propose a novel checklist/standards for presenting orthopaedic database information (SOPOD), discuss methods for appropriate data interpretation/analysis, and summarize how to convert findings to a manuscript (providing a previously published example study). Data collection can be divided into two stages: baseline patient demographics and primary/secondary outcomes of interest. Our proposed SOPOD is more orthopaedic-centered and builds upon previous standards for observational studies from the EQUATOR network. There are a host of statistical methods available to analyze data to compare baseline demographics, primary/secondary outcomes and reduce type 1 error seen in large datasets. When drafting a manuscript, it is important to consider and discuss the limitations of database studies, including their retrospective nature, issues with coding/billing, differences in statistical versus clinical significance (or relevance), lack of surgery details (approach, laterality, implants) and limited sampling or follow-up. We hope this paper will serve as a starting point for those interested in conducting lower extremity arthroplasty-database studies.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Arthroplasty
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hoppe D.J.
        • Schemitsch E.H.
        • Morshed S.
        • Tornetta P.
        • Bhandari M.
        Hierarchy of evidence: where observational studies fit in and why we need them.
        J Bone Joint Surg Am. 2009; 91: 2-9https://doi.org/10.2106/JBJS.H.01571
        • Pugely A.J.
        • Martin C.T.
        • Harwood J.
        • Ong K.L.
        • Bozic K.J.
        • Callaghan J.J.
        Database and Registry Research in Orthopaedic Surgery.
        J Bone Jt Surg. 2015; 97: 1799-1808https://doi.org/10.2106/JBJS.O.00134
        • Pugely A.J.
        • Martin C.T.
        • Harwood J.
        • Ong K.L.
        • Bozic K.J.
        • Callaghan J.J.
        Database and Registry Research in Orthopaedic Surgery.
        J Bone Jt Surg. 2015; 97: 1278-1287https://doi.org/10.2106/JBJS.N.01260
        • Cunningham B.P.
        • Harmsen S.
        • Kweon C.
        • Patterson J.
        • Waldrop R.
        • McLaren A.
        • et al.
        Have levels of evidence improved the quality of orthopaedic research?.
        Clin Orthop Relat Res. 2013; 471: 3679-3686https://doi.org/10.1007/S11999-013-3159-4
        • Bedard N.A.
        • Pugely A.J.
        • McHugh M.A.
        • Lux N.R.
        • Bozic K.J.
        • Callaghan J.J.
        Big Data and Total Hip Arthroplasty: How Do Large Databases Compare?.
        J Arthroplasty. 2018; 33 (e3): 41-45https://doi.org/10.1016/j.arth.2017.09.003
        • Bohl D.D.
        • Singh K.
        • Grauer J.N.
        Nationwide Databases in Orthopaedic Surgery Research.
        J Am Acad Orthop Surg. 2016; 24: 673-682https://doi.org/10.5435/JAAOS-D-15-00217
        • Pugely A.J.
        • Martin C.T.
        • Harwood J.
        • Ong K.L.
        • Bozic K.J.
        • Callaghan J.J.
        Database and Registry Research in Orthopaedic Surgery: Part 2: Clinical Registry Data.
        J Bone Joint Surg Am. 2015; 97: 1799-1808https://doi.org/10.2106/JBJS.O.00134
        • Pugely A.J.
        • Martin C.T.
        • Harwood J.
        • Ong K.L.
        • Bozic K.J.
        • Callaghan J.J.
        Database and Registry Research in Orthopaedic Surgery: Part I: Claims-Based Data.
        J Bone Joint Surg Am. 2015; 97: 1278-1287https://doi.org/10.2106/JBJS.N.01260
        • Bohl D.D.
        • Singh K.
        • Grauer J.N.
        Nationwide Databases in Orthopaedic Surgery Research.
        J Am Acad Orthop Surg. 2016; 24: 673-682https://doi.org/10.5435/JAAOS-D-15-00217
        • Smith H.N.
        • Bhandari M.
        • Mahomed N.N.
        • Jan M.
        • Gandhi R.
        Comparison of Arthroplasty Trial Publications After Registration in ClinicalTrials.gov.
        J Arthroplasty. 2012; 27: 1283-1288https://doi.org/10.1016/J.ARTH.2011.11.005
        • Ng M.K.
        • Vakharia R.M.
        • Bozic K.J.
        • Callaghan J.J.
        • Mont M.A.
        Clinical and Administrative Databases Used in Lower Extremity Arthroplasty Research.
        J Arthroplasty. 2021; 36: 3608-3615https://doi.org/10.1016/J.ARTH.2021.05.034
        • Pugely A.J.
        • Callaghan J.J.
        • Martin C.T.
        • Cram P.
        • Gao Y.
        Incidence of and Risk Factors for 30-Day Readmission Following Elective Primary Total Joint Arthroplasty: Analysis From the ACS-NSQIP.
        J Arthroplasty. 2013; 28: 1499-1504https://doi.org/10.1016/J.ARTH.2013.06.032
        • Ng M.
        • Golub I.
        • Piuzzi N.
        • Razi A.
        • Wong C.
        • Mont M.
        Outpatient Primary Total Hip Arthroplasty Is a Safe Alternative to Inpatient Primary Total Hip Arthroplasty: A Matched-Cohort Analysis Study.
        Surg Technol Int. 2021; 39https://doi.org/10.52198/21.STI.39.OS1490
        • Voskuijl T.
        • Hageman M.
        • Ring D.
        Higher Charlson comorbidity index scores are associated with readmission after orthopaedic surgery.
        Clin Orthop Relat Res. 2014; 472: 1638-1644https://doi.org/10.1007/S11999-013-3394-8/TABLES/7
        • Bjorgul K.
        • Novicoff W.M.
        • Saleh K.J.
        Evaluating comorbidities in total hip and knee arthroplasty: available instruments.
        J Orthop Traumatol. 2010; 11: 203-209https://doi.org/10.1007/S10195-010-0115-X/TABLES/1
        • Menendez M.E.
        • Neuhaus V.
        • Van Dijk C.N.
        • Ring D.
        The Elixhauser comorbidity method outperforms the Charlson index in predicting inpatient death after orthopaedic surgery.
        Clin Orthop Relat Res. 2014; 472: 2878-2886https://doi.org/10.1007/S11999-014-3686-7/TABLES/7
        • Gundtoft P.H.
        • Jørstad M.
        • Erichsen J.L.
        • Schmal H.
        • Viberg B.
        The ability of comorbidity indices to predict mortality in an orthopedic setting: a systematic review.
        Syst Rev. 2021; 10: 1-10https://doi.org/10.1186/S13643-021-01785-4/TABLES/3
        • Inacio M.C.S.
        • Pratt N.L.
        • Roughead E.E.
        • Graves S.E.
        Comparing co-morbidities in total joint arthroplasty patients using the RxRisk-V, Elixhauser, and Charlson Measures: A cross-sectional evaluation.
        BMC Musculoskelet Disord. 2015; 16: 1-9https://doi.org/10.1186/S12891-015-0835-4/TABLES/3
        • Hinton Z.W.
        • Fletcher A.N.
        • Ryan S.P.
        • Wu C.J.
        • Bolognesi M.P.
        • Seyler T.M.
        Body Mass Index, American Society of Anesthesiologists Score, and Elixhauser Comorbidity Index Predict Cost and Delay of Care During Total Knee Arthroplasty.
        J Arthroplasty. 2021; 36: 1621-1625https://doi.org/10.1016/J.ARTH.2020.12.016
        • Ng M.
        • Golub I.
        • Piuzzi N.
        • Razi A.
        • Wong C.
        • Mont M.
        Outpatient Primary Total Hip Arthroplasty Is a Safe Alternative to Inpatient Primary Total Hip Arthroplasty: A Matched-Cohort Analysis Study.
        Surg Technol Int. 2021; 39https://doi.org/10.52198/21.STI.39.OS1490
        • Anis H.K.
        • Sodhi N.
        • Vakharia R.M.
        • Scuderi G.R.
        • Malkani A.L.
        • Roche M.W.
        • et al.
        Cost analysis of Medicare patients with varying complexities who underwent total knee arthroplasty.
        J Knee Surg. 2021; 34: 298-302https://doi.org/10.1055/S-0039-1695716/ID/JR190153OA-19
      1. The EQUATOR Network | Enhancing the QUAlity and Transparency Of Health Research n.d. https://www.equator-network.org/ (accessed March 7, 2022).

        • Schulz K.F.
        • Altman D.G.
        • Moher D.
        CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials.
        Trials. 2010; 11: 1-8https://doi.org/10.1186/1745-6215-11-32/FIGURES/1
        • Simera I.
        • Altman D.G.
        • Moher D.
        • Schulz K.F.
        • Hoey J.
        Guidelines for Reporting Health Research: The EQUATOR Network’s Survey of Guideline Authors.
        PLOS Med. 2008; 5: e139https://doi.org/10.1371/JOURNAL.PMED.0050139
        • Hailer N.P.
        Orthopedic registry research — limitations and future perspectives.
        New Pub Med Journals Sweden. 2015; 86: 1-2https://doi.org/10.3109/17453674.2014.1002183
        • Richardson S.
        • Hirsch J.S.
        • Narasimhan M.
        • Crawford J.M.
        • McGinn T.
        • Davidson K.W.
        • et al.
        Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area.
        JAMA. 2020; 323: 2052-2059https://doi.org/10.1001/JAMA.2020.6775
        • Lakomkin N.
        • Goz V.
        • Lajam C.M.
        • Iorio R.
        • Bosco J.A.
        Higher Modified Charlson Index Scores Are Associated With Increased Incidence of Complications, Transfusion Events, and Length of Stay Following Revision Hip Arthroplasty.
        J Arthroplasty. 2017; 32: 1121-1124https://doi.org/10.1016/J.ARTH.2016.11.014
        • Pugely A.J.
        • Callaghan J.J.
        • Martin C.T.
        • Cram P.
        • Gao Y.
        Incidence of and risk factors for 30-day readmission following elective primary total joint arthroplasty: analysis from the ACS-NSQIP.
        J Arthroplasty. 2013; 28: 1499-1504https://doi.org/10.1016/J.ARTH.2013.06.032
        • Vakharia R.M.
        • Sodhi N.
        • Anis H.K.
        • Ehiorobo J.O.
        • Mont M.A.
        • Roche M.W.
        Patients Who Have Cannabis Use Disorder Have Higher Rates of Venous Thromboemboli, Readmission Rates, and Costs Following Primary Total Knee Arthroplasty.
        J Arthroplasty. 2020; 35: 997-1002https://doi.org/10.1016/J.ARTH.2019.11.035
        • Roche M.
        • Law T.Y.
        • Kurowicki J.
        • Sodhi N.
        • Rosas S.
        • Elson L.
        • et al.
        Albumin, Prealbumin, and Transferrin May Be Predictive of Wound Complications following Total Knee Arthroplasty.
        J Knee Surg. 2018; 31: 946-951https://doi.org/10.1055/S-0038-1672122/ID/JR18APR0012SSA-33
        • George J.
        • Chughtai M.
        • Khlopas A.
        • Klika A.K.
        • Barsoum W.K.
        • Higuera C.A.
        • et al.
        Readmission, Reoperation, and Complications: Total Hip vs Total Knee Arthroplasty.
        J Arthroplasty. 2018; 33: 655-660https://doi.org/10.1016/J.ARTH.2017.09.048
        • George J.
        • Piuzzi N.S.
        • Ng M.
        • Sodhi N.
        • Khlopas A.A.
        • Mont M.A.
        Association Between Body Mass Index and Thirty-Day Complications After Total Knee Arthroplasty.
        J Arthroplasty. 2018; 33: 865-871https://doi.org/10.1016/J.ARTH.2017.09.038
        • Ramkumar P.N.
        • Navarro S.M.
        • Haeberle H.S.
        • Karnuta J.M.
        • Mont M.A.
        • Iannotti J.P.
        • et al.
        Development and Validation of a Machine Learning Algorithm After Primary Total Hip Arthroplasty: Applications to Length of Stay and Payment Models.
        J Arthroplasty. 2019; 34: 632-637https://doi.org/10.1016/J.ARTH.2018.12.030
        • Martin R.K.
        • Ley C.
        • Pareek A.
        • Groll A.
        • Tischer T.
        • Seil R.
        Artificial intelligence and machine learning: an introduction for orthopaedic surgeons.
        Knee Surgery, Sport Traumatol Arthrosc. 2021 302 2021; 30: 361-364https://doi.org/10.1007/S00167-021-06741-2
        • Karnuta J.M.
        • Churchill J.L.
        • Haeberle H.S.
        • Nwachukwu B.U.
        • Taylor S.A.
        • Ricchetti E.T.
        • et al.
        The value of artificial neural networks for predicting length of stay, discharge disposition, and inpatient costs after anatomic and reverse shoulder arthroplasty.
        J Shoulder Elb Surg. 2020; 29: 2385-2394https://doi.org/10.1016/J.JSE.2020.04.009
        • Ramkumar P.N.
        • Karnuta J.M.
        • Navarro S.M.
        • Haeberle H.S.
        • Scuderi G.R.
        • Mont M.A.
        • et al.
        Deep Learning Preoperatively Predicts Value Metrics for Primary Total Knee Arthroplasty: Development and Validation of an Artificial Neural Network Model.
        J Arthroplasty. 2019; 34 (e1): 2220-2227https://doi.org/10.1016/j.arth.2019.05.034
        • Lesack K.
        • Naugler C.
        An open-source software program for performing Bonferroni and related corrections for multiple comparisons.
        J Pathol Inform. 2011; 2: 52https://doi.org/10.4103/2153-3539.91130
        • Tourville T.W.
        • Poynter M.E.
        • DeSarno M.J.
        • Struglics A.
        • Beynnon B.D.
        Relationship between synovial fluid ARGS-aggrecan fragments, cytokines, MMPs, and TIMPs following acute ACL injury: A cross-sectional study.
        J Orthop Res. 2015; 33: 1796-1803https://doi.org/10.1002/jor.22961
        • Hanna M.H.
        • Elliott K.M.
        • Stuart-Taylor M.E.
        • Roberts D.R.
        • Buggy D.
        • Arthurs G.J.
        Comparative study of analgesic efficacy and morphine-sparing effect of intramuscular dexketoprofen trometamol with ketoprofen or placebo after major orthopaedic surgery.
        Br J Clin Pharmacol. 2003; 55: 126-133https://doi.org/10.1046/j.1365-2125.2003.01727.x
        • Kocher M.S.
        • Zurakowski D.
        Current Concepts Review Clinical Epidemiology and Biostatistics: A Primer for Orthopaedic Surgeons.
        J BONE Jt Surg. 2004;
        • Shiloach M.
        • Frencher S.K.
        • Steeger J.E.
        • Rowell K.S.
        • Bartzokis K.
        • Tomeh M.G.
        • et al.
        Toward robust information: data quality and inter-rater reliability in the American College of Surgeons National Surgical Quality Improvement Program.
        J Am Coll Surg. 2010; 210: 6-16https://doi.org/10.1016/J.JAMCOLLSURG.2009.09.031
        • Hodges C.B.
        • Stone B.M.
        • Johnson P.K.
        • Carter J.H.
        • Sawyers C.K.
        • Roby P.R.
        • et al.
        Researcher degrees of freedom in statistical software contribute to unreliable results: A comparison of nonparametric analyses conducted in SPSS, SAS, Stata, and R.
        Behav Res Methods. 2022 2022; : 1-25https://doi.org/10.3758/S13428-022-01932-2
        • George J.
        • Piuzzi N.S.
        • Ng M.
        • Sodhi N.
        • Khlopas A.A.
        • Mont M.A.
        Association Between Body Mass Index and Thirty-Day Complications After Total Knee Arthroplasty.
        J Arthroplasty. 2018; 33: 865-871https://doi.org/10.1016/J.ARTH.2017.09.038