Advertisement

Intraosseous Regional Administration of Antibiotic Prophylaxis for Total Knee Arthroplasty: A Systematic Review

Published:October 21, 2022DOI:https://doi.org/10.1016/j.arth.2022.10.023

      Abstract

      Background

      Intraosseous regional administration (IORA) of antibiotics after tourniquet inflation has recently been introduced as a technique to deliver antibiotics directly to the surgical site among patients undergoing total knee arthroplasty (TKA).

      Methods

      PubMed and Embase were queried for studies reporting on IORA for perioperative prophylaxis during TKA. Primary outcome measures were local tissue antibiotic concentrations and rates of prosthetic joint infection (PJI). Eight studies were included for analysis. Four studies (all randomized controlled trials) compared local tissue concentrations between patients receiving IORA and intravenous (IV) antibiotics. Six studies assessed the rate of PJI among patients receiving IORA versus IV antibiotics.

      Results

      All studies found a statistically significant increase in antibiotic concentration in femoral bone and fat samples in patients who were treated with IORA (44.04 μg/g [fat] and 49.3 μg/g [bone] following 500 mg of intraosseous vancomycin) versus IV (3.5 μg/g [fat] and 5.2 μg/g [bone] following 1 g IV of vancomycin). The two studies powered to determine differences in PJI rates found a statistically significant decrease in the rate of PJI among patients receiving IORA versus IV antibiotics. The incidence of PJI in patients treated with IORA and IV antibiotics across all studies was 0.3 and 1.1%, respectively.

      Conclusion

      Perioperative IORA of antibiotics in TKA provides local tissue concentrations of antibiotics that are on average 10 times higher than IV administration alone. Although more adequately powered investigations are necessary to determine the effectiveness of IORA in reducing PJI rates, adoption of IORA should be considered in high-risk patients where elevated tissue antibiotic concentrations would be of a maximum benefit.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Arthroplasty
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rezapoor M.
        • Parvizi J.
        Prevention of periprosthetic joint infection.
        J Arthroplasty. 2015; 30: 902-907https://doi.org/10.1016/j.arth.2015.02.044
        • Parvizi J.
        • Cavanaugh P.K.
        • Diaz-Ledezma C.
        Periprosthetic knee infection: ten strategies that work.
        Knee Surg Relat Res. 2013; 25: 155-164https://doi.org/10.5792/ksrr.2013.25.4.155
        • Alijanipour P.
        • Heller S.
        • Parvizi J.
        Prevention of periprosthetic joint infection: what are the effective strategies?.
        J Knee Surg. 2014; 27: 251-258https://doi.org/10.1055/s-0034-1376332
        • Kurtz S.M.
        • Lau E.
        • Watson H.
        • Schmier J.K.
        • Parvizi J.
        Economic burden of periprosthetic joint infection in the United States.
        J Arthroplasty. 2012; 27: 61-65.e1https://doi.org/10.1016/j.arth.2012.02.022
        • Blom A.W.
        • Brown J.
        • Taylor A.H.
        • Pattison G.
        • Whitehouse S.
        • Bannister G.C.
        Infection after total knee arthroplasty.
        J Bone Joint Surg Br. 2004; 86: 688-691https://doi.org/10.1302/0301-620x.86b5.14887
        • Nickinson R.S.J.
        • Board T.N.
        • Gambhir A.K.
        • Porter M.L.
        • Kay P.R.
        The microbiology of the infected knee arthroplasty.
        Int Orthop. 2010; 34: 505-510https://doi.org/10.1007/s00264-009-0797-y
        • Phillips J.E.
        • Crane T.P.
        • Noy M.
        • Elliott T.S.J.
        • Grimer R.J.
        The incidence of deep prosthetic infections in a specialist orthopaedic hospital: a 15-year prospective survey.
        J Bone Joint Surg Br. 2006; 88: 943-948https://doi.org/10.1302/0301-620X.88B7.17150
        • AlBuhairan B.
        • Hind D.
        • Hutchinson A.
        Antibiotic prophylaxis for wound infections in total joint arthroplasty: a systematic review.
        J Bone Joint Surg Br. 2008; 90: 915-919https://doi.org/10.1302/0301-620X.90B7.20498
        • van Kasteren M.E.E.
        • Manniën J.
        • Ott A.
        • Kullberg B.-J.
        • de Boer A.S.
        • Gyssens I.C.
        Antibiotic prophylaxis and the risk of surgical site infections following total hip arthroplasty: timely administration is the most important factor.
        Clin Infect Dis. 2007; 44: 921-927https://doi.org/10.1086/512192
        • Bratzler D.W.
        • Houck P.M.
        Surgical infection prevention guideline writers workgroup. Antimicrobial prophylaxis for surgery: an advisory statement from the national surgical infection prevention project.
        Am J Surg. 2005; 189: 395-404https://doi.org/10.1016/j.amjsurg.2005.01.015
        • Young S.W.
        • Zhang M.
        • Freeman J.T.
        • Mutu-Grigg J.
        • Pavlou P.
        • Moore G.A.
        The Mark Coventry Award: higher tissue concentrations of vancomycin with low-dose intraosseous regional versus systemic prophylaxis in TKA: a randomized trial.
        Clin Orthop. 2014; 472: 57-65https://doi.org/10.1007/s11999-013-3038-z
        • Young S.W.
        • Zhang M.
        • Freeman J.T.
        • Vince K.G.
        • Coleman B.
        Higher cefazolin concentrations with intraosseous regional prophylaxis in TKA.
        Clin Orthop. 2013; 471: 244-249https://doi.org/10.1007/s11999-012-2469-2
        • Chin S.J.
        • Moore G.A.
        • Zhang M.
        • Clarke H.D.
        • Spangehl M.J.
        • Young S.W.
        The AAHKS Clinical Research Award: intraosseous regional prophylaxis provides higher tissue concentrations in high BMI patients in total knee arthroplasty: a randomized trial.
        J Arthroplasty. 2018; 33: S13-S18https://doi.org/10.1016/j.arth.2018.03.013
        • Yamada K.
        • Matsumoto K.
        • Tokimura F.
        • Okazaki H.
        • Tanaka S.
        Are bone and serum cefazolin concentrations adequate for antimicrobial prophylaxis?.
        Clin Orthop. 2011; 469: 3486-3494https://doi.org/10.1007/s11999-011-2111-8
        • Ravi S.
        • Zhu M.
        • Luey C.
        • Young S.W.
        Antibiotic resistance in early periprosthetic joint infection.
        ANZ J Surg. 2016; 86: 1014-1018https://doi.org/10.1111/ans.13720
        • McNamara D.R.
        • Steckelberg J.M.
        Vancomycin.
        J Am Acad Orthop Surg. 2005; 13: 89-92https://doi.org/10.5435/00124635-200503000-00001
        • Parkinson B.
        • McEwen P.
        • Wilkinson M.
        • Hazratwala K.
        • Hellman J.
        • Kan H.
        • et al.
        Intraosseous regional prophylactic antibiotics decrease the risk of prosthetic joint infection in primary TKA: a multicenter study.
        Clin Orthop Relat Res. 2021; 479: 2504-2512https://doi.org/10.1097/CORR.0000000000001919
        • Park K.J.
        • Chapleau J.
        • Sullivan T.C.
        • Clyburn T.A.
        • Incavo S.J.
        Chitranjan S. Ranawat Award: intraosseous vancomycin reduces periprosthetic joint infection in primary total knee arthroplasty at 90-day follow-up.
        Bone Joint J. 2021; 103-B: 13-17https://doi.org/10.1302/0301-620X.103B6.BJJ-2020-2401.R1
        • Harper K.D.
        • Lambert B.S.
        • O’Dowd J.
        • Sullivan T.
        • Incavo S.J.
        Clinical outcome evaluation of intraosseous vancomycin in total knee arthroplasty.
        Arthroplast Today. 2020; 6: 220-223https://doi.org/10.1016/j.artd.2020.02.001
        • Klasan A.
        • Patel C.K.
        • Young S.W.
        Intraosseous regional administration of vancomycin in primary total knee arthroplasty does not increase the risk of vancomycin-associated complications.
        J Arthroplasty. 2021; 36: 1633-1637https://doi.org/10.1016/j.arth.2020.12.034
        • Young S.W.
        • Zhang M.
        • Moore G.A.
        • Pitto R.P.
        • Clarke H.D.
        • Spangehl M.J.
        The John N. Insall Award: higher tissue concentrations of vancomycin achieved with intraosseous regional prophylaxis in revision TKA: a randomized controlled trial.
        Clin Orthop. 2018; 476: 66-74https://doi.org/10.1007/s11999.0000000000000013
        • Lowe J.
        • Sweeney P.
        • Parekh S.
        Intraosseous Antibiotic Infusion- an old solution for an older problem.
        J Orthop Exp Innov. 2020; 59 (Medical Device Innovations): 17196
        • Buck M.L.
        • Wiggins B.S.
        • Sesler J.M.
        Intraosseous drug administration in children and adults during cardiopulmonary resuscitation.
        Ann Pharmacother. 2007; 41: 1679-1686https://doi.org/10.1345/aph.1K168
        • Paxton J.H.
        Intraosseous vascular access: a review.
        Trauma. 2012; 14: 195-232https://doi.org/10.1177/1460408611430175
        • Leidel B.A.
        • Kirchhoff C.
        • Bogner V.
        • Stegmaier J.
        • Mutschler W.
        • Kanz K.-G.
        • et al.
        Is the intraosseous access route fast and efficacious compared to conventional central venous catheterization in adult patients under resuscitation in the emergency department? A prospective observational pilot study.
        Patient Saf Surg. 2009; 3: 24https://doi.org/10.1186/1754-9493-3-24
        • Barlow B.
        • Kuhn K.
        Orthopedic management of complications of using intraosseous catheters.
        Am J Orthop (Belle Mead NJ). 2014; 43: 186-190
        • Slim K.
        • Nini E.
        • Forestier D.
        • Kwiatkowski F.
        • Panis Y.
        • Chipponi J.
        Methodological index for non-randomized studies (minors): development and validation of a new instrument.
        ANZ J Surg. 2003; 73: 712-716https://doi.org/10.1046/j.1445-2197.2003.02748.x
        • Rybak M.
        • Lomaestro B.
        • Rotschafer J.C.
        • Moellering Jr., R.
        • Craig W.
        • Billeter M.
        • et al.
        Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists.
        Am J Health Syst Pharm. 2009; 66: 82-98https://doi.org/10.2146/ajhp080434
        • Tenover F.C.
        • Moellering R.C.
        The rationale for revising the Clinical and Laboratory Standards Institute vancomycin minimal inhibitory concentration interpretive criteria for Staphylococcus aureus.
        Clin Infect Dis. 2007; 44: 1208-1215https://doi.org/10.1086/513203
        • Steinkraus G.
        • White R.
        • Friedrich L.
        Vancomycin MIC creep in non-vancomycin-intermediate Staphylococcus aureus (VISA), vancomycin-susceptible clinical methicillin-resistant S. aureus (MRSA) blood isolates from 2001–05.
        J Antimicrob Chemother. 2007; 60: 788-794https://doi.org/10.1093/jac/dkm258
        • Wang G.
        • Hindler J.F.
        • Ward K.W.
        • Bruckner D.A.
        Increased vancomycin MICs for Staphylococcus aureus clinical isolates from a university hospital during a 5-year period.
        J Clin Microbiol. 2006; 44: 3883-3886https://doi.org/10.1128/JCM.01388-06
        • Catanzano A.
        • Phillips M.
        • Dubrovskaya Y.
        • Hutzler L.
        • Bosco J.
        The standard one gram dose of vancomycin is not adequate prophylaxis for MRSA.
        Iowa Orthop J. 2014; 34: 111-117
        • Kheir M.M.
        • Tan T.L.
        • Azboy I.
        • Tan D.D.
        • Parvizi J.
        Vancomycin prophylaxis for total joint arthroplasty: incorrectly dosed and has a higher rate of periprosthetic infection than cefazolin.
        Clin Orthop. 2017; 475: 1767-1774https://doi.org/10.1007/s11999-017-5302-0
        • Hidayat L.K.
        • Hsu D.I.
        • Quist R.
        • Shriner K.A.
        • Wong-Beringer A.
        High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity.
        Arch Intern Med. 2006; 166: 2138-2144https://doi.org/10.1001/archinte.166.19.2138
        • Klastersky J.
        • Van der Auwera P.
        Cephalosporins, vancomycin, aminoglycosides and other drugs, especially in combination, for the treatment of methicillin-resistant staphylococcal infections.
        J Antimicrob Chemother. 1986; 17: 19-24https://doi.org/10.1093/jac/17.suppl_A.19
        • Donabedian H.
        • Andriole V.T.
        Synergy of vancomycin with penicillins and cephalosporins against Pseudomonas, Klebsiella, and Serratia.
        Yale J Biol Med. 1977; 50: 165-176
        • Elyasi S.
        • Khalili H.
        • Dashti-Khavidaki S.
        • Mohammadpour A.
        Vancomycin-induced nephrotoxicity: mechanism, incidence, risk factors and special populations. A literature review.
        Eur J Clin Pharmacol. 2012; 68: 1243-1255https://doi.org/10.1007/s00228-012-1259-9
        • Black E.
        • Lau T.T.
        • Ensom M.H.
        Vancomycin-induced neutropenia: is it dose- or duration-related?.
        Ann Pharmacother. 2011; 45: 629-638https://doi.org/10.1345/aph.1P583
        • Wallace M.R.
        • Mascola J.R.
        • Oldfield III, E.C.
        Red man syndrome: incidence, etiology, and prophylaxis.
        J Infect Dis. 1991; 164: 1180-1185https://doi.org/10.1093/infdis/164.6.1180
        • Bozic K.J.
        • Lau E.
        • Kurtz S.
        • Ong K.
        • Berry D.J.
        Patient-related risk factors for postoperative mortality and periprosthetic joint infection in medicare patients undergoing TKA.
        Clin Orthop. 2012; 470: 130-137https://doi.org/10.1007/s11999-011-2043-3
        • Crowe B.
        • Payne A.
        • Evangelista P.J.
        • Stachel A.
        • Phillips M.S.
        • Slover J.D.
        • et al.
        Risk factors for infection following total knee arthroplasty: a series of 3836 cases from one institution.
        J Arthroplasty. 2015; 30: 2275-2278https://doi.org/10.1016/j.arth.2015.06.058
        • Kunutsor S.K.
        • Whitehouse M.R.
        • Blom A.W.
        • Beswick A.D.
        • INFORM Team
        Patient-related risk factors for periprosthetic joint infection after total joint arthroplasty: a systematic review and meta-analysis.
        PLoS One. 2016; 11: e0150866https://doi.org/10.1371/journal.pone.0150866
        • Baek S.-H.
        Identification and preoperative optimization of risk factors to prevent periprosthetic joint infection.
        World J Orthop. 2014; 5: 362-367https://doi.org/10.5312/wjo.v5.i3.362
        • Nussenbaum F.D.
        • Rodriguez-Quintana D.
        • Fish S.M.
        • Green D.M.
        • Cahill C.W.
        Implementation of preoperative screening criteria lowers infection and complication rates following elective total hip arthroplasty and total knee arthroplasty in a Veteran population.
        J Arthroplasty. 2018; 33: 10-13https://doi.org/10.1016/j.arth.2017.07.031
        • Inabathula A.
        • Dilley J.E.
        • Ziemba-Davis M.
        • Warth L.C.
        • Azzam K.A.
        • Ireland P.H.
        • et al.
        Extended oral antibiotic prophylaxis in high-risk patients substantially reduces primary total hip and knee arthroplasty 90-day infection rate.
        JBJS. 2018; 100: 2103-2109https://doi.org/10.2106/JBJS.17.01485
        • Zimmerli W.
        Chapter 52 - bone and joint infections.
        in: Finch R.G. Greenwood D. Norrby S.R. Whitley R.J. Antibiot. Chemother. 9th ed. W.B. Saunders, London2010: 659-666https://doi.org/10.1016/B978-0-7020-4064-1.00052-X